moist convection
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 119)

H-INDEX

59
(FIVE YEARS 6)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Brian P. Reen ◽  
Huaqing Cai ◽  
Robert E. Dumais ◽  
Yuanfu Xie ◽  
Steve Albers ◽  
...  

The combination of techniques that incorporate observational data may improve numerical weather prediction forecasts; thus, in this study, the methodology and potential value of one such combination were investigated. A series of experiments on a single case day was used to explore a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System; vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating moist convection in the Advanced Research version of the Weather Research and Forecasting model. Experiments were carried out with various combinations of vLAPS and nudging for a series of forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally performed similarly in reproducing the overall convective structures. Objective verification indicated that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that further research is needed on how to best apply analysis nudging of analyses at these scales.


2022 ◽  
Author(s):  
Christoph Schär

<p>Currently major efforts are underway toward refining the horizontal grid spacing of climate models to about 1 km, using both global and regional climate models. There is the well-founded hope that this increase in resolution will improve climate models, as it enables replacing the parameterizations of moist convection and gravity-wave drag by explicit treatments. Results suggest that this approach has a high potential in improving the representation of the water cycle and extreme events, and in reducing uncertainties in climate change projections. The presentation will provide examples of these developments in the areas of heavy precipitation and severe weather events over Europe. In addition, it will be argued that km-resolution is a promising approach toward constraining uncertainties in global climate change projections, due to improvements in the representation of tropical and subtropical clouds. Work in the latter area has only recently started and results are highly encouraging.</p> <p>For a few years there have also been attempts to make km-resolution available in global climate models for decade-long simulations. Developing this approach requires a concerted effort. Key challenges include the exploitation of the next generation hardware architectures using accelerators (e.g. graphics processing units, GPUs), the development of suitable approaches to overcome the output avalanche, and the maintenance of the rapidly-developing model source codes on a number of different compute architectures. Despite these challenges, it will be argued that km-resolution GCMs with a capacity to run at 1 SYPD (simulated year per day), might be much closer than commonly believed.</p> <p>The presentation is largely based on a recent collaborative paper (Schär et al., 2020, BAMS, https://doi.org/10.1175/BAMS-D-18-0167.1) and ongoing studies. It will also present aspects of a recent Swiss project in this area (EXCLAIM, https://exclaim.ethz.ch/).</p>


2022 ◽  
Author(s):  
Lia Siegelman ◽  
Patrice Klein ◽  
Andrew P. Ingersoll ◽  
Shawn P. Ewald ◽  
William R. Young ◽  
...  

AbstractJupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–Bénard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet.


2021 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Bojun Zhu ◽  
Zhaoxia Pu ◽  
Agie Wandala Putra ◽  
Zhiqiu Gao

Accurate high-resolution precipitation forecasts are critical yet challenging for weather prediction under complex topography or severe synoptic forcing. Data fusion and assimilation aimed at improving model forecasts, as one possible approach, has gained increasing attention in past decades. This study investigates the influence of the observations from a C-band Doppler radar over the west coast of Sumatra on high-resolution numerical simulations of precipitation around its vicinity under the Madden–Julian oscillation (MJO) in January and February 2018. Cases during various MJO phases were selected for simulations with an advanced research version of the weather research and forecasting (WRF) model at a cloud-permitting scale (~3 km). A 3-dimensional variational (3DVAR) data assimilation method and a hybrid three-dimensional ensemble–variational data assimilation (3DEnVAR) method, based on the NCEP Gridpoint Statistical Interpolation (GSI) assimilation system, were used to assimilate the radar reflectivity and the radial velocity data. The WRF-simulated precipitation was validated with the Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data, and the fractions skill score (FSS) was calculated in order to evaluate the radar data impacts objectively. The results show improvements in the simulated precipitation with hourly radar data assimilation 6 h prior to the simulations. The modifications with assimilation were validated through the observation departure and moist convection. It was found that forecast improvements are relatively significant when precipitation is more related to local-scale convection but rather small when the background westerly wind is strong under the MJO active phase. The additional simulation experiments, under a 1- or 2-day assimilation cycle, indicate better improvements in the precipitation simulation with 3DEnVAR radar assimilation than those with the 3DVAR method.


Abstract Atmospheric deep moist convection has emerged as one of the most challenging topics for numerical weather prediction, due to its chaotic process of development and multi-scale physical interactions. This study examines the dynamics and predictability of a weakly organized linear convective system using convection permitting EnKF analysis and forecasts with assimilating all-sky satellite radiances from a water vapor sensitive band of the Advanced Baseline Imager on GOES-16. The case chosen occurred over the Gulf of Mexico on 11 June 2017 during the NASA Convective Processes Experiment (CPEX) field campaign. Analysis of the water vapor and dynamic ensemble covariance structures revealed that meso-α (2000-200 km) and meso-β (200-20 km) scale initial features helped to constrain the general location of convection with a few hours of lead time, contributing to enhancing convective activity, but meso-γ (20-2 km) or even smaller scale features with less than 30-minute lead time were identified to be essential for capturing individual convective storms. The impacts of meso-α scale initial features on the prediction of particular individual convective cells were found to be classified into two regimes; in a relatively dry regime, the meso-α scale environment needs to be moist enough to support the development of the convection of interest, but in a relatively wet regime, a drier meso-α scale environment is preferable to suppress the surrounding convective activity. This study highlights the importance of high-resolution initialization of moisture fields for the prediction of a quasi-linear tropical convective system, as well as demonstrating the accuracy that may be necessary to predict convection exactly when and where it occurs.


Author(s):  
Christopher A. Davis

Abstract The Sierras de Córdoba (SDC) mountain range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly LLJ, and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using CM1. The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. Thesimulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.


2021 ◽  
pp. 1-42

Abstract The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-Africa convection permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (8°W-2°E, 12-17°N). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the north Sahel and the Saharan heat low regions, the sub-tropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northwards and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal and large-scales. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and sub-tropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modellers and climate policy decision makers.


2021 ◽  
Vol 923 (1) ◽  
pp. L15
Author(s):  
Xianyu Tan ◽  
Maxence Lefèvre ◽  
Raymond T. Pierrehumbert

Abstract Condensable species are crucial to shaping planetary climate. A wide range of planetary climate systems involve understanding nondilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in nondilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. In this work, we tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in postrunaway atmospheres. We show that the atmosphere is composed of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower, noncondensing region, and the horizontal temperature variation is small. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibits random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert is appropriate for handling the basic structure of atmospheres near the pure-steam limit but cannot capture gravity waves and their mixing which appear in 3D convection-resolving models.


2021 ◽  
Author(s):  
Tao Cai ◽  
Kwing L. Chan ◽  
Kim-Chiu Chow

Abstract The Great Red Spot at about latitude 22oS of Jupiter has been observed for hundreds of years, yet the driving mechanism on the formation of this giant anticyclone still remains unclear. Two scenarios were proposed to explain its formation. One is a shallow model suggesting that it might be a weather feature formed through a merging process of small shallow storms generated by moist convection, while the other is a deep model suggesting that it might be a deeply rooted anticyclone powered by the internal heat of Jupiter. In this work, we present numerical simulations showing that the Great Red Spot could be naturally generated in a deep rotating turbulent flow and survive for a long time, when the convective Rossby number is smaller than a certain critical value. From this critical value, we predict that the Great Red Spot extends at least about 500 kilometers deep into the Jovian atmosphere. Our results demonstrate that the Great Red Spot is likely to be a feature deep-seated in the Jovian atmosphere.


Sign in / Sign up

Export Citation Format

Share Document