sorafenib treatment
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 167)

H-INDEX

27
(FIVE YEARS 8)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Osman Öcal ◽  
Regina Schinner ◽  
Kerstin Schütte ◽  
Enrico N. de Toni ◽  
Christian Loewe ◽  
...  

Abstract Background The aim of this study was to explore the relationship between follow-up imaging characteristics and overall survival (OS) in advanced hepatocellular carcinoma (HCC) patients under sorafenib treatment. Methods Associations between OS and objective response (OR) by mRECIST or early tumor shrinkage (ETS; ≥20% reduction in enhancing tumor diameter at the first follow-up imaging) were analyzed in HCC patients treated with sorafenib within a multicenter phase II trial (SORAMIC). 115 patients were included in this substudy. The relationship between survival and OR or ETS were explored. Landmark analyses were performed according to OR at fixed time points. Cox proportional hazards models with OR and ETS as a time-dependent covariate were used to compare survival with factors known to influence OS. Results The OR rate was 29.5%. Responders had significantly better OS than non-responders (median 30.3 vs. 11.4 months; HR, 0.38 [95% CI, 0.22–0.63], p < 0.001), and longer progression-free survival (PFS; median 10.1 vs. 4.3 months, p = 0.015). Patients with ETS ≥ 20% had longer OS (median 22.1 vs. 11.4 months, p = 0.002) and PFS (median 8.0 vs. 4.3 months, p = 0.034) than patients with ETS < 20%. Besides OR and ETS, male gender, lower bilirubin and ALBI grade were associated with improved OS in univariate analysis. Separate models of multivariable analysis confirmed OR and ETS as independent predictors of OS. Conclusion OR according to mRECIST and ETS in patients receiving sorafenib treatment are independent prognostic factors for OS. These parameters can be used for assessment of treatment benefit and optimal treatment sequencing in patients with advanced HCC.


Author(s):  
Yuanjun Lu ◽  
Yau-Tuen Chan ◽  
Hor-Yue Tan ◽  
Cheng Zhang ◽  
Wei Guo ◽  
...  

Abstract Background Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. Methods The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. Results We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3′-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. Conclusion Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Kevin Zhou ◽  
Romario Nguyen ◽  
Liang Qiao ◽  
Jacob George

2021 ◽  
Author(s):  
Danyang Li ◽  
Yingcheng Yao ◽  
Yuhan Rao ◽  
Xinyu Huang ◽  
Li Wei ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the fourth leading cause of cancer-related death worldwide. Sorafenib is currently acknowledged as a standard therapy for advanced HCC. However, acquired resistance substantially limits the clinical efficacy of sorafenib. Therefore, further investigations of the associated risk factors are highly warranted.Methods: We analysed a group of 78 HCC patients who received sorafenib treatment after liver resection surgery. The expression of SCAP and its correlation with sorafenib resistance in HCC clinical samples were determined by immunohistochemical analyses. Overexpression and knockdown approaches in vitro were used to characterize the functional roles of SCAP in regulating sorafenib resistance. The effects of SCAP inhibition in HCC cell lines were analysed in proliferation, apoptosis, and colony formation assays. Autophagic regulation by SCAP was assessed by immunoblotting, immunofluorescence and immunoprecipitation assays. The combinatorial effect of a SCAP inhibitor and sorafenib was tested using nude mice.Results: Hypercholesterolemia was associated with sorafenib resistance in HCC treatment. The degree of sorafenib resistance was correlated with the expression of the cholesterol sensor SCAP and consequent deposition of cholesterol. SCAP is overexpressed in HCC tissues and hepatocellular carcinoma cell lines with sorafenib resistance, while SCAP inhibition could improve sorafenib sensitivity in sorafenib-resistant HCC cells. Furthermore, we found that SCAP-mediated sorafenib resistance was related to decreased autophagy, which was connected to decreased AMPK activity. A clinically significant finding was that lycorine, a specific SCAP inhibitor, could reverse acquired resistance to sorafenib in vitro and in vivo.Conclusions: SCAP contributes to sorafenib resistance through AMPK-mediated autophagic regulation. The combination of sorafenib and SCAP targeted therapy provides a novel personalized treatment to enhance sensitivity in sorafenib-resistant HCC.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Tamer Roshdy ◽  
shimaa Saleh ◽  
Nasser Abbas ◽  
Khalid Bassiouny ◽  
Hany Khalil

Author(s):  
Yifei Qin ◽  
Zhuo Pei ◽  
Zhuan Feng ◽  
Peng Lin ◽  
Shijie Wang ◽  
...  

Ferroptosis, a form of programmed cell death process driven by iron-dependent lipid peroxidation, plays an important role in tumor suppression. Although previous study showed that intracellular Merlin-Hippo signaling suppresses ferroptosis of epithelial tumor cells through the inactivation of YAP signaling, it remains elusive if the proto-oncogenic transcriptional co-activator YAP could serve as a potential biomarker to predict cancer cell response to ferroptosis-inducing therapies. In this study, we show that both total YAP staining and nuclear YAP staining were more prevalent in HCC tissues than in nontumorous regions. Compared to low-density HCC cells, high-density cells showed decreased nuclear localization of YAP and conferred significant resistance to ferroptosis. Oncogenic activation of YAP signaling by overexpression of YAP(S127A) mutant sensitized ferroptosis of HCC cells cultured in confluent density or in the 3D tumor spheroid model. Furthermore, we validated the lipoxygenase ALOXE3 as a YAP-TEAD target gene that contributed to YAP-promoted ferroptosis. Overexpression of ALOXE3 effectively increased the vulnerability of HCC cells to ferroptotic cell death. In an orthotopic mouse model of HCC, genetic activation of YAP rendered HCC cells more susceptible to ferroptosis. Finally, an overall survival assay further revealed that both a high expression of YAP and a low expression of GPX4 were correlated with increased survival of HCC patients with sorafenib treatment, which had been proven to be an inducer for ferroptosis by inhibition of the xc-amino acid antiporter. Together, this study unveils the critical role of intracellular YAP signaling in dictating ferroptotic cell death; it also suggests that pathogenic alterations of YAP signaling can serve as biomarkers to predict cancer cell responsiveness to future ferroptosis-inducing therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wojciech K. Jankiewicz ◽  
Scott D. Barnett ◽  
Anna Stavniichuk ◽  
Sung Hee Hwang ◽  
Bruce D. Hammock ◽  
...  

Kidney injury from antiangiogenic chemotherapy is a significant clinical challenge, and we currently lack the ability to effectively treat it with pharmacological agents. Thus, we set out to investigate whether simultaneous soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) inhibition using a dual sEH/COX-2 inhibitor PTUPB could be an effective strategy for treating antiangiogenic therapy-induced kidney damage. We used a multikinase inhibitor, sorafenib, which is known to cause serious renal side effects. The drug was administered to male Sprague–Dawley rats that were on a high-salt diet. Sorafenib was administered over the course of 56 days. The study included three experimental groups; 1) control group (naïve rats), 2) sorafenib group [rats treated with sorafenib only (20 mg/kg/day p.o.)], and 3) sorafenib + PTUPB group (rats treated with sorafenib only for the initial 28 days and subsequently coadministered PTUPB (10 mg/kg/day i.p.) from days 28 through 56). Blood pressure was measured every 2 weeks. After 28 days, sorafenib-treated rats developed hypertension (161 ± 4 mmHg). Over the remainder of the study, sorafenib treatment resulted in a further elevation in blood pressure through day 56 (200 ± 7 mmHg). PTUPB treatment attenuated the sorafenib-induced blood pressure elevation and by day 56, blood pressure was 159 ± 4 mmHg. Urine was collected every 2 weeks for biochemical analysis. After 28 days, sorafenib rats developed pronounced proteinuria (9.7 ± 0.2 P/C), which intensified significantly (35.8 ± 3.5 P/C) by the end of day 56 compared with control (2.6 ± 0.4 P/C). PTUPB mitigated sorafenib-induced proteinuria, and by day 56, it reduced proteinuria by 73%. Plasma and kidney tissues were collected on day 56. Kidney histopathology revealed intratubular cast formation, interstitial fibrosis, glomerular injury, and glomerular nephrin loss at day 56 in sorafenib-treated rats. PTUPB treatment reduced histological features by 30%–70% compared with the sorafenib-treated group and restored glomerular nephrin levels. Furthermore, PTUPB also acted on the glomerular permeability barrier by decreasing angiotensin-II-induced glomerular permeability to albumin. Finally, PTUPB improved in vitro the viability of human mesangial cells. Collectively, our data demonstrate the potential of using PTUPB or dual sEH/COX-2 inhibition as a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity.


Author(s):  
Zefeng Liu ◽  
Jin Lu ◽  
He Fang ◽  
Jiyao Sheng ◽  
Mengying Cui ◽  
...  

Hepatocellular carcinoma (HCC) has a poor prognosis due to its high malignancy, rapid disease progression, and the presence of chemotherapy resistance. Long-stranded non-coding RNAs (lncRNAs) affect many malignant tumors, including HCC. However, their mechanism of action in HCC remains unclear. This study aimed to clarify the role of DUXAP8 in regulating the malignant phenotype and chemotherapy resistance in HCC. Using an in vivo xenograft tumor model, the regulatory functions and mechanisms of lncRNA DUXAP8 in the progression and response of HCC to chemotherapy were explored. It was found that DUXAP8 was significantly upregulated in a patient-derived xenograft tumor model based on sorafenib treatment, which is usually associated with a relatively poor prognosis in patients. In HCC, DUXAP8 maintained its upregulation in the expression by increasing the stability of m6A methylation-mediated RNA. DUXAP8 levels were positively correlated with the proliferation, migration, invasion, and chemotherapy resistance of HCC in vivo and in vitro. In the mechanistic study, it was found that DUXAP8 competitively binds to miR-584-5p through a competing endogenous RNA (ceRNA) mechanism, thus acting as a molecular sponge for miR-584-5p to regulate MAPK1 expression, which in turn activates the MAPK/ERK pathway. These findings can provide ideas for finding new prognostic indicators and therapeutic targets for patients with HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Munire Abulimiti ◽  
Zhenyu Li ◽  
Haifeng Wang ◽  
Palida Apiziaji ◽  
Yisikandaer Abulimiti ◽  
...  

Purpose. To compare the difference in outcome of hepatocellular carcinoma (HCC) with portal vein thrombosis (PVTT) between intensity-modulated radiotherapy (IMRT) concurrent with sorafenib and IMRT alone. Methods. A total of 82 patients with PVTT from 2014 to 2019 were included. Of these, 36 received IMRT concurrent with sorafenib treatment (group A), while 46 underwent IMRT alone (group B). The dose of IMRT was 40.0–62.5 Gy/2–2.5 Gy/4–6 w, and patients received orally administered sorafenib 400 mg twice a day in combination with IMRT. Overall survival (OS), progression-free survival (PFS), and median distant metastasis-free survival (DMFS) were evaluated by using LIFETEST procedure of SAS. Results. The median survival time was 11.0 months in group A versus 9.0 months in group B. The 1- and 2-year OS in group A were 44.9% and 3.8% versus 28.6% and 2.6% in group B ( P = 0.036 ), respectively. The median PFS was 6.0 months in group A versus 3.0 months in group B. The 1- and 2-year PFS in group A were 20.7% and 6.9% versus 2.7% and 0.0% in group B ( P = 0.012 ), respectively. The 1- and 2-year DMFS in group A were 38.0% and 7.9% versus 16.7% and 0.0% in group B ( P = 0.019 ), respectively. Multivariate analysis showed that Child–Pugh classification, AFP response, and overall response were independent risk factors for OS ( P < 0.05 ). There were no significant differences in adverse events except fatigue and skin reactions between the two groups. Conclusion. Compared with IMRT alone, IMRT concurrent with sorafenib can improve the long-term efficacy of HCC patients with PVTT, without increasing adverse reactions. The patients with Child–Pugh A, overall response, and AFP response obtained better OS.


2021 ◽  
Author(s):  
Xiaoju Li ◽  
Qianqian Yu ◽  
Xinyan Guo ◽  
Chenlin Liu ◽  
Runze Zhao ◽  
...  

Abstract Background Sorafenib is one of the few effective first-line drugs approved for the treatment of advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common among individuals with HCC. Thus, there is an urgent need to solve this problem. Results Recent evidence indicated that the anticancer activity of sorafenib mainly relies on the induction of ferroptosis. In our study, genes that suppress ferroptosis, especially GPX4 and DHODH, were enriched in sorafenib-resistant cells and primary tissues and were associated with poor prognosis of HCC patients who received sorafenib treatment. Therefore, silencing GPX4 and DHODH might be a novel and effective strategy to overcome sorafenib resistance. Here, a novel ferroptosis inducer comprising a multiplex small interfering RNA (multi-siRNA) capable of simultaneously silencing GPX4 and DHODH was created. Then, exosomes with high multi-siRNA loading and HCC-specific targeting were established by fusing the SP94 peptide and the N-terminal RNA recognition motif (RRM) of U1-A with the exosomal membrane protein Lamp2b. The results from the in vitro and in vivo experiments indicate that this tumor-targeting nanodelivery system (ExoSP94−lamp2b−RRM-multi-siRNA) could enhance sorafenib-induced ferroptosis and overcome sorafenib resistance, which might open a new avenue for clinically overcoming sorafenib resistance. Conclusions We designed HCC-targeted exosomes (ExoSP94−Lamp2b−RRM) that can deliver a novel ferroptosis inducer. Our data show that ExoSP94−lamp2b−RRM-multi-siRNA could enhance sorafenib-induced ferroptosis by silencing GPX4 and DHODH expression and consequently increase HCC sensitivity to sorafenib. This is the first study to describe the use of engineered exosomes to overcome acquired sorafenib resistance with respect to ferroptosis.


Sign in / Sign up

Export Citation Format

Share Document