alanine scanning mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 51)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 719
Author(s):  
Yeonje Cho ◽  
Armin Mirzapour-Kouhdasht ◽  
Hyosuk Yun ◽  
Jeong Hoon Park ◽  
Hye Jung Min ◽  
...  

Radioactive isotopes are used as drugs or contrast agents in the medical field after being conjugated with chelates such as DOTA, NOTA, DTPA, TETA, CyDTA, TRITA, and DPDP. The N-terminal sequence of human serum albumin (HSA) is known as a metal binding site, such as for Co2+, Cu2+, and Ni2+. For this study, we designed and synthesized wAlb12 peptide from the N-terminal region of HSA, which can bind to cobalt, to develop a peptide-based chelate. The wAlb12 with a random coil structure tightly binds to the Co(II) ion. Moreover, the binding property of wAlb12 toward Co(II) was confirmed using various spectroscopic experiments. To identify the binding site of wAlb12, the analogs were synthesized by alanine scanning mutagenesis. Among them, H3A and Ac-wAlb12 did not bind to Co(II). The analysis of the binding regions confirmed that the His3 and α-amino group of the N-terminal region are important for Co(II) binding. The wAlb12 bound to Co(II) with Kd of 75 μM determined by isothermal titration calorimetry when analyzed by a single-site binding model. For the use of wAlb12 as a chelate in humans, its cytotoxicity and stability were investigated. Trypsin stability showed that the wAlb12 − Co(II) complex was more stable than wAlb12 alone. Furthermore, the cell viability analysis showed wAlb12 and wAlb12 + Co(II) to be non-toxic to the Raw 264.7 and HEK 293T cell lines. Therefore, a hot radioactive isotope such as cobalt-57 will have the same effect as a stable isotope cobalt. Accordingly, we expect wAlb12 to be used as a peptide chelate that binds with radioactive isotopes.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Alexandra Tran-Van-Minh ◽  
Michel De Waard ◽  
Norbert Weiss

AbstractVoltage-gated calcium channels are essential regulators of brain function where they support depolarization-induced calcium entry into neurons. They consist of a pore-forming subunit (Cavα1) that requires co-assembly with ancillary subunits to ensure proper functioning of the channel. Among these ancillary subunits, the Cavβ plays an essential role in regulating surface expression and gating of the channels. This regulation requires the direct binding of Cavβ onto Cavα1 and is mediated by the alpha interacting domain (AID) within the Cavα1 subunit and the α binding pocket (ABP) within the Cavβ subunit. However, additional interactions between Cavα1 and Cavβ have been proposed. In this study, we analyzed the importance of Cavβ3 surface charged residues in the regulation of Cav2.1 channels. Using alanine-scanning mutagenesis combined with electrophysiological recordings we identified several amino acids within the Cavβ3 subunit that contribute to the gating of the channel. These findings add to the notion that additional contacts besides the main AID/ABP interaction may occur to fine-tune the expression and properties of the channel.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1783
Author(s):  
Zhengli Bai ◽  
Menglong Xu ◽  
Ying Mei ◽  
Tuo Hu ◽  
Panpan Zhang ◽  
...  

Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (KD = 1.72 nM) and an extremely slow dissociation rate (koff, 4.84 × 10−5 s−1), which interprets its quite low binding energy (−54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2353
Author(s):  
Chelsea T. Barrett ◽  
Hadley E. Neal ◽  
Kearstin Edmonds ◽  
J. Lizbeth Reyes Zamora ◽  
Carole L. Moncman ◽  
...  

Hendra virus (HeV) is a zoonotic enveloped member of the family Paramyoxviridae. To successfully infect a host cell, HeV utilizes two surface glycoproteins: the attachment (G) protein to bind, and the trimeric fusion (F) protein to merge the viral envelope with the membrane of the host cell. The transmembrane (TM) region of HeV F has been shown to have roles in F protein stability and the overall trimeric association of F. Previously, alanine scanning mutagenesis has been performed on the C-terminal end of the protein, revealing the importance of β-branched residues in this region. Additionally, residues S490 and Y498 have been demonstrated to be important for F protein endocytosis, needed for the proteolytic processing of F required for fusion. To complete the analysis of the HeV F TM, we performed alanine scanning mutagenesis to explore the residues in the N-terminus of this region (residues 487–506). In addition to confirming the critical roles for S490 and Y498, we demonstrate that mutations at residues M491 and L492 alter F protein function, suggesting a role for these residues in the fusion process.


2021 ◽  
Author(s):  
Jennifer S Sun ◽  
Ameya A Mashruwala ◽  
Chenyi Fei ◽  
Bonnie Bassler

The bacterial cell-cell communication process called quorum sensing enables groups of bacteria to synchronously alter behavior in response to changes in cell population density. Quorum sensing relies on the production, release, accumulation, and detection of extracellular signal molecules called autoinducers. Here, we investigate a mechanism employed by a vibriophage to surveil host quorum sensing and tune its lysogeny-lysis decision to host cell density. The phage possesses a gene called vqmAPhage encoding a quorum-sensing receptor homologous to vibrio VqmA. Both VqmA receptors can detect the host bacteria-produced autoinducer called DPO. DPO-bound VqmAPhage launches the phage lysis process. We discover that the bacterial host produces an inducer of the VqmAPhage-directed quorum-sensing lysogeny-lysis transition. Production of the inducer appears to be widespread among bacteria. A screen of the Escherichia coli Keio collection for mutants impaired for inducer production revealed lomR, located in a prophage, and encoding a poorly understood protein. In the E. coli screening strain, lomR is interrupted by DNA encoding an insertion element. The 3’ domain of this LomR protein is sufficient to induce VqmAPhage-directed lysis. Alanine-scanning mutagenesis showed that substitution at either of two key residues abrogates inducer activity. Full-length LomR is similar to the outer membrane porin OmpX in E. coli and Vibrio parahaemolyticus O3:K6, and OmpT in Vibrio cholerae C6706, and indeed, OmpX and OmpT can induce VqmAPhage-directed activity. Possibly, development of the LomR, OmpX, or OmpT proteins as tools to direct phage lysis of host cells could be used to control bacteria in medical or industrial settings.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Nathaniel D. M. Holman ◽  
Anthony J. Wilkinson ◽  
Margaret C. M. Smith

In Actinobacteria , protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation has an important role in cell envelope physiology. In S. coelicolor, defective Pmt leads to increased susceptibility to cell wall-targeting antibiotics, including vancomycin and β-lactams, and resistance to phage ϕC31. The aim of this study was to gain a deeper understanding of the structure and function of S. coelicolor Pmt. Sequence alignments and structural bioinformatics were used to identify target sites for an alanine-scanning mutagenesis study. Mutant alleles were introduced into pmt-deficient S. coelicolor strains using an integrative plasmid and scored for their ability to complement phage resistance and antibiotic hypersusceptibility phenotypes. Twenty-three highly conserved Pmt residues were each substituted for alanine. Six mutant alleles failed to complement the pmt ▬ strains in either assay. Mapping the six corresponding residues onto a homology model of the three-dimensional structure of Pmt, indicated that five are positioned close to the predicted catalytic DE motif. Further mutagenesis to produce more conservative substitutions at these six residues produced Pmts that invariably failed to complement the DT1025 pmt ▬ strain, indicating that strict residue conservation was necessary to preserve function. Cell fractionation and Western blotting of strains with the non-complementing pmt alleles revealed undetectable levels of the enzyme in either the membrane fractions or whole cell lysates. Meanwhile for all of the strains that complemented the antibiotic hypersusceptibility and phage resistance phenotypes, Pmt was readily detected in the membrane fraction. These data indicate a tight correlation between the activity of Pmt and its stability or ability to localize to the membrane.


2021 ◽  
Author(s):  
Zhengli Bai ◽  
Menglong Xu ◽  
Ying Mei ◽  
Tuo Hu ◽  
Panpan Zhang ◽  
...  

Abstract Inhibition of Proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. To eliminate the cytotoxic effector functions and mitigate the heterogeneity, the heavy-chain constant region of h5E12-L230G was modified with L234A/L235A/N297G mutations and C-terminal lysine deletion. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (KD =1.72 nM) and an extremely slow dissociation rate (koff, 4.84 × 10−5 s−1), which interprets its quite low binding energy (-54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reduced the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to Alirocumab. Our data suggest that h5E12-L230G is a highly potent antibody binding to PCSK9 catalytic domain with slow dissociation rate which may be utilized as a therapeutic candidate for treating hypercholesterolemia and relevant cardiovascular diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Parras ◽  
Patricia Solé ◽  
Thomas Delong ◽  
Pere Santamaría ◽  
Pau Serra

The mechanisms underlying the major histocompatibility complex class II (MHCII) type 1 diabetes (T1D) association remain incompletely understood. We have previously shown that thymocytes expressing the highly diabetogenic, I-Ag7-restricted 4.1-T-cell receptor (TCR) are MHCII-promiscuous, and that, in MHCII-heterozygous mice, they sequentially undergo positive and negative selection/Treg deviation by recognizing pro- and anti-diabetogenic MHCII molecules on cortical thymic epithelial cells and medullary hematopoietic antigen-presenting cells (APCs), respectively. Here, we use a novel autoantigen discovery approach to define the antigenic specificity of this TCR in the context of I-Ag7. This was done by screening the ability of random epitope–GS linker–I-Aβg7chain fusion pools to form agonistic peptide–MHCII complexes on the surface of I-Aαd chain-transgenic artificial APCs. Pool deconvolution, I-Ag7-binding register-fixing, TCR contact residue mapping, and alanine scanning mutagenesis resulted in the identification of a 4.1-TCR recognition motif XL(G/A)XEXE(D/E)X that was shared by seven agonistic hybrid insulin peptides (HIPs) resulting from the fusion of several different chromogranin A and/or insulin C fragments, including post-translationally modified variants. These data validate a novel, highly sensitive MHCII-restricted epitope discovery approach for orphan TCRs and suggest thymic selection of autoantigen-promiscuous TCRs as a mechanism for the murine T1D–I-Ag7-association.


Sign in / Sign up

Export Citation Format

Share Document