transmission overhead
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

5
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3064
Author(s):  
Abdulah Jeza Aljohani ◽  
Muhammad Moinuddin

Power-domain non-orthogonal multiple access (NOMA) assigns different power levels for near and far users in order to discriminate their signals by employing successive interference cancellation (SIC) at the near user. In this context, multiple-input-single-output NOMA (MISO-NOMA), where the base station (BS) is equipped with multiple antennas while each mobile user has a single antenna receiver, is shown to have a better overall performance by using the knowledge of instantaneous channel state information (CSI). However, this requires prior estimation of CSI using pilot transmission, which increases the transmission overhead. Moreover, its performance is severely degraded in the presence of CSI estimation errors. In this work, we provide statistical beamforming solutions for downlink power-domain NOMA that utilize only knowledge of statistical CSI, thus reducing the transmission overhead significantly. First, we derive the outage probabilities for both near and far users in the multi-user NOMA system without imposing strong assumptions, such as Gaussian or Chi-square distribution. This is done by employing the exact characterization of the ratio of indefinite quadratic form (IQF). Second, this work proposes two techniques to obtain the optimal solution for beam vectors which rely on the derived outage probabilities. Specifically, these two methods are based on (1) minimization of total beam power while constraining the outage probabilities to the QoS threshold, and (2) minimization of outage probabilities while constraining the total beam power. These proposed methods are non-convex function of beam vectors and, hence, are solved using numerical optimization via sequential quadratic programming (SQP). Since the proposed methods do not require pilot transmission for channel estimation, they inherit better spectral efficiency. Our results validate the theoretical findings and prove the supremacy of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yana Qin ◽  
Danye Wu ◽  
Zhiwei Xu ◽  
Jie Tian ◽  
Yujun Zhang

To enhance the quality and speed of data processing and protect the privacy and security of the data, edge computing has been extensively applied to support data-intensive intelligent processing services at edge. Among these data-intensive services, ensemble learning-based services can, in natural, leverage the distributed computation and storage resources at edge devices to achieve efficient data collection, processing, and analysis. Collaborative caching has been applied in edge computing to support services close to the data source, in order to take the limited resources at edge devices to support high-performance ensemble learning solutions. To achieve this goal, we propose an adaptive in-network collaborative caching scheme for ensemble learning at edge. First, an efficient data representation structure is proposed to record cached data among different nodes. In addition, we design a collaboration scheme to facilitate edge nodes to cache valuable data for local ensemble learning, by scheduling local caching according to a summarization of data representations from different edge nodes. Our extensive simulations demonstrate the high performance of the proposed collaborative caching scheme, which significantly reduces the learning latency and the transmission overhead.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6212
Author(s):  
Xinying Chen ◽  
Siyi Xiao

An application based on a microservice architecture with a set of independent, fine-grained modular services is desirable, due to its low management cost, simple deployment, and high portability. This type of container technology has been widely used in cloud computing. Several methods have been applied to container-based microservice scheduling, but they come with significant disadvantages, such as high network transmission overhead, ineffective load balancing, and low service reliability. In order to overcome these disadvantages, in this study, we present a multi-objective optimization problem for container-based microservice scheduling. Our approach is based on the particle swarm optimization algorithm, combined parallel computing, and Pareto-optimal theory. The particle swarm optimization algorithm has fast convergence speed, fewer parameters, and many other advantages. First, we detail the various resources of the physical nodes, cluster, local load balancing, failure rate, and other aspects. Then, we discuss our improvement with respect to the relevant parameters. Second, we create a multi-objective optimization model and use a multi-objective optimization parallel particle swarm optimization algorithm for container-based microservice scheduling (MOPPSO-CMS). This algorithm is based on user needs and can effectively balance the performance of the cluster. After comparative experiments, we found that the algorithm can achieve good results, in terms of load balancing, network transmission overhead, and optimization speed.


Author(s):  
Huahong Ma ◽  
Honghai Wu ◽  
Ling Xing ◽  
Ping Xie ◽  
Dan Wang

AbstractWith the development of various mobile social applications, video data has already occupied a dominant proportion of mobile Internet traffic, and is still growing rapidly, which not only brings economic pressure to users, but also causes traffic explosion on Internet. Data delivery through mobile opportunistic networks is regarded as an efficient way to deal with this problem. But, due to the characteristics of video data and the mode of multi-copy routing, video opportunistic delivery will consume large amount of network resources, resulting in excessive transmission overhead and lower delivery quality. Fortunately, the strong aggregation of human activity gives us some inspiration, which can provide more space of deep optimization on video opportunistic transmission. Thus, in this paper, taking fully advantage of the connectivity of cluster formed by the gathering crowds, we propose a Video Opportunistic Replication scheme based on multi-player cooperative games, named VideoOR, which can achieve the double optimizations of transmission overhead and video delivery quality by scheduling the replication and forwarding of video packets under the guidance of Nash Equilibrium solution. Extensive simulations have been done based on the synthetic and real mobility traces, and the results show that our scheme can maximize the quality of reconstructed video and minimize the average replication times of each video packet.


2021 ◽  
Author(s):  
Runze Wu ◽  
Xiang Ao ◽  
Bing Fan ◽  
Hailin Hu

AbstractThe software-defined networks-enable mobile edge computing (SDN-enable MEC) architecture, which integrates SDN and MEC technologies, realizes the flexibility and dynamic management of the underlying network resources by the MEC, reduces the distance between the access terminal and computing resources and network resources, and increases the terminal's access to resources. However, the static distribution relationship between MEC servers (MECSs) and controllers in the multi-controller architecture may result in unbalanced load distribution among the controllers, which would degrade network performance. In this paper, a multi-objective optimization MECS redistribution algorithm (MOSRA) is proposed to decrease the response time and overhead. A controller response time model and link transmit overhead model are introduced as basis of an evolutionary algorithm which is proposed to optimize MECS redistribution. The proposed algorithm aims to select an available sub-optimizes individual by using a strategy based coordination transformation from Pareto Front. That is, when the master controller of the MECS is redistributed, both of the network overhead of the MECS to the controller and the response time of the controller to the MECS processing request are optimized. Finally, the simulation results demonstrate that the MOSRA can solve the redistribution problem in different network load levels and different network sizes within the effective time, and has a lower control plane response time, while making the edge network plane transmission overhead lower, compared with other algorithms .


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4334
Author(s):  
Weiwei Yang ◽  
Ye Li

To fulfill the increasing demand on low-latency content distribution, this paper considers content distribution using generation-based network coding with the belief propagation decoder. We propose a framework to design generation-based network codes via characterizing them as building an irregular graph, and design the code by evaluating the graph. The and-or tree evaluation technique is extended to analyze the decoding performance. By allowing for non-constant generation sizes, we formulate optimization problems based on the analysis to design degree distributions from which generation sizes are drawn. Extensive simulation results show that the design may achieve both low decoding cost and transmission overhead as compared to existing schemes using constant generation sizes, and satisfactory decoding speed can be achieved. The scheme would be of interest to scenarios where (1) the network topology is not known, dynamically changing, and/or has cycles due to cooperation between end users, and (2) computational/memory costs of nodes are of concern but network transmission rate is spare.


Sign in / Sign up

Export Citation Format

Share Document