wear model
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 106)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yifan Li ◽  
Yongyong Xiang ◽  
Baisong Pan ◽  
Luojie Shi

Abstract Accurate cutting tool remaining useful life (RUL) prediction is of significance to guarantee the cutting quality and minimize the production cost. Recently, physics-based and data-driven methods have been widely used in the tool RUL prediction. The physics-based approaches may not accurately describe the time-varying wear process due to a lack of knowledge for underlying physics and simplifications involved in physical models, while the data-driven methods may be easily affected by the quantity and quality of data. To overcome the drawbacks of these two approaches, a hybrid prognostics framework considering tool wear state is developed to achieve an accurate prediction. Firstly, the mapping relationship between the sensor signal and tool wear is established by support vector regression (SVR). Then, the tool wear statuses are recognized by support vector machine (SVM) and the results are put into a Bayesian framework as prior information. Thirdly, based on the constructed Bayesian framework, parameters of the tool wear model are updated iteratively by the sliding time window and particle filter algorithm. Finally, the tool wear state space and RUL can be predicted accordingly using the updating tool wear model. The validity of the proposed method is demonstrated by a high-speed machine tool experiment. The results show that the presented approach can effectively reduce the uncertainty of tool wear state estimation and improve the accuracy of RUL prediction.


Author(s):  
Mikko Helle ◽  
Henrik Saxén ◽  
Bart de Graaff ◽  
Cornelis van der Bent

AbstractThe condition and state of the hearth of the blast furnace is of considerable importance since the life length of the refractories governs the campaign length of the furnace, but it is also of significance as it affects the drainage of iron and slag and the hot metal temperature and composition. The paper analyses the hearth of a blast furnace using a model of the lining wear based on the solution of an inverse heat conduction problem, studying the changes in the lining state throughout the campaign. Different operation states are detected, characterized by smooth and efficient hot metal production and by erratic behavior with large disturbances in the hearth state. During the periods of poor performance, the hearth exhibits a cycling state with stages of excessive skull growth on the unworn refractory, followed by periods of dissolution of the skull and lining erosion. An explanation of the transitions is sought by a stating and solving a force balance for the deadman with the aim to clarify whether it is floating or sitting. A connection between the thermal cycles in the hearth and the hot metal sulfur content is finally demonstrated.


Author(s):  
Shuli Zhang ◽  
Decheng Wang ◽  
Peng Cheng ◽  
Chenxi Shao

The present work aimed at understanding the wear mechanism of spring coil forming die and the effects of die geometry on wear. The wear morphology was analyzed by scanning electron microscopy and energy dispersive spectrometer. The main wear mechanism was found to be adhesive wear, and a variant of the Archard wear model was established. The wear distribution in spring coil forming die was numerically analyzed in DEFORM software, and the effects of die geometry parameters on wear were discussed. Numerical results revealed that the wear distribution in the die was uneven and the wear mainly occurred at the sides of the die cavity. The wear depth was greatly affected by the width and angle of the die cavity, whereas the length of the die cavity had little effect. A small cavity width or angle led to severe wear, while a large cavity width reduced the forming quality of the spring coil. Moreover, a simple and effective life prediction method was proposed based on wear results. The findings of this research will be helpful for the effective design of spring coil forming die and the prediction of wear.


Author(s):  
Yahong Xue ◽  
Xudong Wang ◽  
Shicheng Yan ◽  
Jutao Wang ◽  
Haibo Zhou

Abstract As the self-lubricating layer of self-lubricating spherical plain bearings, fabric liner shows obvious heterogeneous anisotropic characteristics, so it is a technical difficulty to predict its wear properties. In this paper, the continuous wear of self-lubricating fabric liner was simulated based on the mesoscopic scale wear model. The macroscopic wear properties of the fabric liner were characterized by establishing a representative volume element (RVE), and subsequently imposing periodic boundary restrictions (PBCs) on periodic surfaces. In order to avoid excessive mesh distortion, voxel grids meshing method was used, and then continuous wear of the heterogeneous material was realized by adjusting node coordinates and combining nodes. Detailed comparison between simulation prediction results and wear test data of fabric liner was made. The good correlation of the results confirmed that the mesoscopic scale wear model could be used in accurately predict the tribological performance of fabric composite.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1998
Author(s):  
Zhanshuo Peng ◽  
Hongchao Ji ◽  
Xiaomin Huang ◽  
Baoyu Wang ◽  
Wenchao Xiao ◽  
...  

Cross wedge rolling has the advantages of high production efficiency, good product quality, high material utilization, environmental protection, and low cost. It is one of the best processing methods for producing shaft blanks. In this paper, a cross wedge rolling die of TC4 titanium alloy is studied. Based on the Archard wear model, a modified model suitable for cross wedge rolling die wear analysis is derived through finite element simulation. Then, the modified Archard wear model is imported into Deform-3D software for finite element analysis. Orthogonal experimental design is used to combine and analyze different process parameters. Finally, the beetle antennae search (BAS)-genetic algorithm (GA)-back propagation neural network (BPNN) algorithm is used to predict the degree of die wear and to optimize the simulation parameters, which can acquire the process parameters that have the least impact on die wear. The results show that the wear distributions of cross wedge rolling tools is uneven. In general, the most serious areas are basically concentrated in the wedge-shaped inclined plane and rectangular edge lines. The reason is that the tangential force and radial force received by the die are relatively large, which leads to increased wear. Moreover, the temperature change is most severe on the wedge-shaped ridge line. When in contact with the workpiece, the temperature rises sharply, which makes the local temperature rise, the mold hardness decrease, and the wear accelerate. Through response surface method (RSM) analysis, it is concluded that the deformation temperature is the main factor affecting wear depth, followed by the forming angle, and that there is an interaction between the two factors. Finally, the feasibility of the BAS-GA-BP algorithm for optimizing the wear behavior of dies is verified, which provides a new process parameter optimization method for the problem of die wear in the cross wedge rolling process.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 113
Author(s):  
Felix Hartung ◽  
Mario Alejandro Garcia ◽  
Thomas Berger ◽  
Michael Hindemith ◽  
Matthias Wangenheim ◽  
...  

Tread wear appears as a consequence of friction, which mainly depends on surface characteristics, contact pressure, slip velocity, temperature and dissipative material properties of the tread material itself. The subsequent description introduces a wear model as a function of the frictional energy rate. A post-processing as well as an adaptive re-meshing algorithm are implemented into a finite element code in order to predict wear loss in terms of mass. The geometry of block models is generated by image processing tools using photographs of the rubber samples in the laboratory. In addition, the worn block shape after the wear test is compared to simulation results.


Author(s):  
Haozhou Ma ◽  
Xuewen Wang ◽  
Bo Li ◽  
Zhaoyang Liu ◽  
Wenjie Bi ◽  
...  

Middle trough is the main-force portion of a scraper conveyor during transport, and its performance directly affects the reliability and service life of the scraper conveyor. To investigate the wear of a middle trough, a coupling-wear model of a middle trough was built to analyse the motion state and stress of a scraper, and the wear of the middle trough was analysed according to the wear morphology of the middle plate. The research results demonstrated that the simulation model based on coupling of the discrete element method and multi-body dynamics could effectively simulate the transport conditions of a scraper conveyor. The wear of the middle trough was mainly caused by three-body wear. Formation of three-body wear required that the coal particles between the scraper (chain) and middle plate must be in a certain position and posture, and the coal particles were subjected to the normal force of the scraper (chain) and middle plate. Constant fluctuation in the movement and force of the scraper (chain) resulted in uneven wear of the middle trough and random occurrence of three-body wear. This study provides a theoretical basis for wear prediction of the middle trough of a scraper conveyor and a simulation basis for further research on the wear resistance of a middle trough.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6958
Author(s):  
Tianyu Zhang ◽  
Jian Wang ◽  
Zhizhou Pan ◽  
Qing Tao

The carburizing–quenching–tempering process is generally conducted on heavy-duty gear in order to obtain favorable comprehensive mechanical performance. Different mechanical properties could be produced by carbon partition and precipitation. In this study, the carburizing–quenching–tempering process was carried out on low-carbon alloy steel in order to investigate the influence of microstructure evolution and precipitate transition on mechanical behavior and wear resistance under different carburizing/tempering durations. Favorable comprehensive mechanical property and wear resistance could be obtained in favor of long durations of carburizing/tempering. A fatigue-wear model was proposed to describe fatigue crack evolution and damage mechanism on the basis of wear features.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012098
Author(s):  
Xin Li ◽  
Bingbing Wang

Abstract An adhesive wear model based on a complete contact model for a fractal surface is presented in this work. A contact model which contains effect of adhesion is firstly presented based on ME model. A complete contact model is then proposed. Finally, an adhesive wear model based on this model is given. The results suggest that the maximum contact area increases firstly and then decreases as fractal dimension increases. The percentage of plastic contact area increases with increase of the fractal dimension. And the experimental results for wear volume have shown a good consistency with the results calculated by the wear model.


2021 ◽  
Vol 17 (2) ◽  
pp. 121
Author(s):  
Asdiar Surya Kurniawan
Keyword(s):  

Keausan merupakan fenomena tribologi yang terjadi pada setiap peralatan akibat kontak mekanik antara dua komponen. Dalam kurun waktu yang lama keausan ini akan menimbulkan kerusakan pada peralatan. Untuk meningkatkan keandalan dan efisiensi peralatan, maka fenomena keausan ini perlu dikaji lebih lanjut. Penelitian ini bertujuan menghitung kedalaman aus dan volume aus sebuah pin berbentuk silinder pendekatan line contact menggunakan tribometer pin-on-disc. Variasi yang dilakukan adalah pembebanan yaitu sebesar 6 N, 8 N, dan 10 N. Pengujian keausan dilakukan pada keadaan tanpa pelumas. Hasil eksperimen kemudian dibandingkan dengan metode analitik GIWM (Global Incremental Wear Model). Hasil penelitian memperlihatkan bahwa eksperimen tribometer pin-on-disc dan GIWM sama-sama berbanding lurus dengan pembebanan. Pada beban 10 N dengan jarak sliding 904,32 m memiliki kedalaman aus 2,46096E-05 m dan volume keausan 1,62778E-08 m3. Pada beban 6 N pada jarak sliding yang sama memiliki kedalaman aus 1,75067E-05 m dan volume aus 9,76666E-09 m3. Semakin bertambah pembebanan dan jarak sliding maka nilai keausan semakin bertambah.


Sign in / Sign up

Export Citation Format

Share Document