trajectory prediction
Recently Published Documents


TOTAL DOCUMENTS

1148
(FIVE YEARS 654)

H-INDEX

33
(FIVE YEARS 10)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
Yanliang Zhu ◽  
Dongchun Ren ◽  
Yi Xu ◽  
Deheng Qian ◽  
Mingyu Fan ◽  
...  

Trajectory prediction of multiple agents in a crowded scene is an essential component in many applications, including intelligent monitoring, autonomous robotics, and self-driving cars. Accurate agent trajectory prediction remains a significant challenge because of the complex dynamic interactions among the agents and between them and the surrounding scene. To address the challenge, we propose a decoupled attention-based spatial-temporal modeling strategy in the proposed trajectory prediction method. The past and current interactions among agents are dynamically and adaptively summarized by two separate attention-based networks and have proven powerful in improving the prediction accuracy. Moreover, it is optional in the proposed method to make use of the road map and the plan of the ego-agent for scene-compliant and accurate predictions. The road map feature is efficiently extracted by a convolutional neural network, and the features of the ego-agent’s plan is extracted by a gated recurrent network with an attention module based on the temporal characteristic. Experiments on benchmark trajectory prediction datasets demonstrate that the proposed method is effective when the ego-agent plan and the the surrounding scene information are provided and achieves state-of-the-art performance with only the observed trajectories.


2022 ◽  
Vol 136 ◽  
pp. 103554
Author(s):  
Xiping Wu ◽  
Hongyu Yang ◽  
Hu Chen ◽  
Qinzhi Hu ◽  
Haoliang Hu

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
He Ma ◽  
Yi Zuo ◽  
Tieshan Li

With the increasing application and utility of automatic identification systems (AISs), large volumes of AIS data are collected to record vessel navigation. In recent years, the prediction of vessel trajectories has become one of the hottest research issues. In contrast to existing studies, most researchers have focused on the single-trajectory prediction of vessels. This article proposes a multiple-trajectory prediction model and makes two main contributions. First, we propose a novel method of trajectory feature representation that uses a hierarchical clustering algorithm to analyze and extract the vessel navigation behavior for multiple trajectories. Compared with the classic methods, e.g., Douglas–Peucker (DP) and least-squares cubic spline curve approximation (LCSCA) algorithms, the mean loss of trajectory features extracted by our method is approximately 0.005, and it is reduced by 50% and 30% compared to the DP and LCSCA algorithms, respectively. Second, we design an integrated model for simultaneous prediction of multiple trajectories using the proposed features and employ the long short-term memory (LSTM)-based neural network and recurrent neural network (RNN) to pursue this time series task. Furthermore, the comparative experiments prove that the mean value and standard deviation of root mean squared error (RMSE) using the LSTM are 4% and 14% lower than those using the RNN, respectively.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Peng Wang ◽  
Jing Yang ◽  
Jianpei Zhang

Unlike outdoor trajectory prediction that has been studied many years, predicting the movement of a large number of users in indoor space like shopping mall has just been a hot and challenging issue due to the ubiquitous emerging of mobile devices and free Wi-Fi services in shopping centers in recent years. Aimed at solving the indoor trajectory prediction problem, in this paper, a hybrid method based on Hidden Markov approach is proposed. The proposed approach clusters Wi-Fi access points according to their similarities first; then, a frequent subtrajectory based HMM which captures the moving patterns of users has been investigated. In addition, we assume that a customer’s visiting history has certain patterns; thus, we integrate trajectory prediction with shop category prediction into a unified framework which further improves the predicting ability. Comprehensive performance evaluation using a large-scale real dataset collected between September 2012 and October 2013 from over 120,000 anonymized, opt-in consumers in a large shopping center in Sydney was conducted; the experimental results show that the proposed method outperforms the traditional HMM and perform well enough to be usable in practice.


2022 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Hai-Yan Yao ◽  
Wang-Gen Wan ◽  
Xiang Li

Analysis of pedestrians’ motion is important to real-world applications in public scenes. Due to the complex temporal and spatial factors, trajectory prediction is a challenging task. With the development of attention mechanism recently, transformer network has been successfully applied in natural language processing, computer vision, and audio processing. We propose an end-to-end transformer network embedded with random deviation queries for pedestrian trajectory forecasting. The self-correcting scheme can enhance the robustness of the network. Moreover, we present a co-training strategy to improve the training effect. The whole scheme is trained collaboratively by the original loss and classification loss. Therefore, we also achieve more accurate prediction results. Experimental results on several datasets indicate the validity and robustness of the network. We achieve the best performance in individual forecasting and comparable results in social forecasting. Encouragingly, our approach achieves a new state of the art on the Hotel and Zara2 datasets compared with the social-based and individual-based approaches.


2022 ◽  
pp. 59-76
Author(s):  
Hui Liu ◽  
Chao Chen ◽  
Yanfei Li ◽  
Zhu Duan ◽  
Ye Li

Sign in / Sign up

Export Citation Format

Share Document