empirical valence bond
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Martin Pfeiffer ◽  
Bernd Nidetzky ◽  
Rory Crean ◽  
Cátia Moreira ◽  
Antonietta Parracino ◽  
...  

Cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. A deepened understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes, and provides an essential benchmark for enzyme design and engineering. Here, we study the functional interconnectedness of the catalytic nucleophile (His18) in an acid phosphatase by analyzing the consequences of its replacement with aspartate. We present crystallographic, biochemical and computational evidence for a conserved mechanistic pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy relationships for phosphoryl transfer from phosphomonoester substrates to His18/Asp18 provide evidence for cooperative interplay between the nucleophilic and general-acid catalytic groups in the wildtype enzyme, and its substantial loss in the H18D variant. As an isolated factor of phosphatase efficiency, the advantage of a histidine compared to an aspartate nucleophile is around 10^4-fold. Cooperativity with the catalytic acid adds ≥10^2-fold to that advantage. Empirical valence bond simulations of phosphoryl transfer from glucose 1-phosphate to His and Asp in the enzyme explain the loss of activity of the Asp18 enzyme through a combination of impaired substrate positioning in the Michaelis complex, as well as a shift from early to late protonation of the leaving group in the H18D variant. The evidence presented furthermore suggests that the cooperative nature of catalysis distinguishes the enzymatic reaction from the corresponding reaction in solution and is enabled by the electrostatic preorganization of the active site. Our results reveal sophisticated discrimination in multifunctional catalysis of a highly proficient phosphatase active site.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7155
Author(s):  
Bjarte Aarmo Lund ◽  
Bjørn Olav Brandsdal

The determination of the temperature dependence of enzyme catalysis has traditionally been a labourious undertaking. We have developed a new approach to the classical Arrhenius parameter estimation by fitting the change in velocity under a gradual change in temperature. The evaluation with a simulated dataset shows that the approach is valid. The approach is demonstrated as a useful tool by characterizing the Bacillus pumilus LipA enzyme. Our results for the lipase show that the enzyme is psychrotolerant, with an activation energy of 15.3 kcal/mol for the chromogenic substrate para-nitrophenyl butyrate. Our results demonstrate that this can produce equivalent curves to the traditional approach while requiring significantly less sample, labour and time. Our method is further validated by characterizing three α-amylases from different species and habitats. The experiments with the α-amylases show that the approach works over a wide range of temperatures and clearly differentiates between psychrophilic, mesophilic and thermophilic enzymes. The methodology is released as an open-source implementation in Python, available online or used locally. This method of determining the activation parameters can make studies of the temperature dependence of enzyme catalysis more widely adapted to understand how enzymes have evolved to function in extreme environments. Moreover, the thermodynamic parameters that are estimated serve as functional validations of the empirical valence bond calculations of enzyme catalysis.


Author(s):  
LINA ZHAO ◽  
Dibyendu Mondal ◽  
Weifeng Li ◽  
Yuguang Mu ◽  
Philipp Kaldis

Lignin is one of the world’s most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.


2020 ◽  
Vol 124 (38) ◽  
pp. 8259-8265
Author(s):  
Alja Prah ◽  
Miha Purg ◽  
Jernej Stare ◽  
Robert Vianello ◽  
Janez Mavri

2020 ◽  
Vol 21 (17) ◽  
pp. 6151
Author(s):  
Tana Tandarić ◽  
Alja Prah ◽  
Jernej Stare ◽  
Janez Mavri ◽  
Robert Vianello

Monoamine oxidases (MAOs) catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders, and are, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. Still, despite this practical significance, the precise molecular mechanism underlying the irreversible MAO inhibition with clinically used propargylamine inhibitors rasagiline and selegiline is still not unambiguously determined, which hinders the rational design of improved inhibitors devoid of side effects current drugs are experiencing. To address this challenge, we present empirical valence bond QM/MM simulations of the rate-limiting step of the MAO inhibition involving the hydride anion transfer from the inhibitor α-carbon onto the N5 atom of the flavin adenin dinucleotide (FAD) cofactor. The proposed mechanism is strongly supported by the obtained free energy profiles, which confirm a higher reactivity of selegiline over rasagiline, while the calculated difference in the activation Gibbs energies of ΔΔG‡ = 3.1 kcal mol−1 is found to be in very good agreement with that from the measured literature kinact values that predict a 1.7 kcal mol−1 higher selegiline reactivity. Given the similarity with the hydride transfer mechanism during the MAO catalytic activity, these results verify that both rasagiline and selegiline are mechanism-based irreversible inhibitors and offer guidelines in designing new and improved inhibitors, which are all clinically employed in treating a variety of neuropsychiatric and neurodegenerative conditions.


Author(s):  
Michal Biler ◽  
Anna K. Schweiger ◽  
Robert Kourist ◽  
Shina Caroline Lynn Kamerlin

<div> <div> <div> <p>Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity and selectivity of this enzyme are only poorly understood to this day, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond simulations were performed on wild-type AMDase and variants thereof, to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope, and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the non-converted or poorly-converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Our results thus allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


Sign in / Sign up

Export Citation Format

Share Document