micro pulse lidar
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hailing Xie ◽  
Zhien Wang ◽  
Tian Zhou ◽  
Kang Yang ◽  
Xiaohong Liu ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1415
Author(s):  
Xianjie Cao ◽  
Gefei Lu ◽  
Mengqi Li ◽  
Jiayun Wang

The macroscopic characteristics of clouds over Lanzhou, China were investigated using micro-pulse lidar data from September 2005 to November 2011. The results show that the mean of the cloud base height, cloud peak height, cloud top height and cloud thickness during the observation was 4.03 km, 4.81 km, 5.50 km and 1.47 km, respectively; the maximum frequency of the cloud base height, cloud peak height, cloud top height and cloud thickness was 25.7% in the range of 1–2 km, 16.2% in the range of 2–3 km, 14.6% in the range of 2–3 km and 42.2% in the range of 1–2 km, respectively; the maximum frequency of cloud base height was 24.2%, 24.6%, 29.7% and 21.4% in spring, summer, autumn and winter, respectively, all in the range of 1–2 km, and middle clouds occurred most frequently at 41.4%, followed by low clouds (33.7%) and high clouds (24.9%) during the observation period; the maximum frequency of cloud peak height was 15.8% in the range of 3–4 km, 18% in the range of 4–5 km, 20% in the range of 2–3 km in autumn and 18.6% in the range of 5–6 km in winter; the maximum frequency of cloud top height was 14% in the range of 3–4 km in spring, 16% in the range of 4–5 km in summer, 20.1% in the range of 2–3 km in autumn and 17.8% in the range of 7–8 km in winter; the maximum frequency of cloud thickness was 44.9%, 35.6% and 52% in the range of 1–2 km in spring, summer and winter, respectively, while it was 44.9% in the range of 0–1 km in autumn; the cloud thickness was mostly less than 3 km; generally, the thicker of cloud, the less the frequency.


2021 ◽  
Author(s):  
María Ángeles López Cayuela ◽  
Carmen Córdoba-Jabonero ◽  
Daniel Pérez-Ramírez ◽  
Milagros Herrera ◽  
Juan Luís Guerrero-Rascado

2021 ◽  
pp. 105818
Author(s):  
María-Ángeles López-Cayuela ◽  
Marcos Herreras-Giralda ◽  
Carmen Córdoba-Jabonero ◽  
Anton Lopatin ◽  
Oleg Dubovik ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 5225-5239
Author(s):  
Carmen Córdoba-Jabonero ◽  
Albert Ansmann ◽  
Cristofer Jiménez ◽  
Holger Baars ◽  
María-Ángeles López-Cayuela ◽  
...  

Abstract. Simultaneous observations of a polarized micro-pulse lidar (P-MPL) system and two reference European Aerosol Research Lidar Network lidars running at the Leipzig site Germany, 51.4∘ N, 12.4∘ E; 125 m a.s.l.) were performed during a comprehensive 2-month field intercomparison campaign in summer 2019. An experimental assessment regarding both the overlap (OVP) correction of the P-MPL signal profiles and the volume linear depolarization ratio (VLDR) analysis, together with its impact on the retrieval of the aerosol optical properties, is achieved; the experimental procedure used is also described. The optimal lidar-specific OVP function is experimentally determined, highlighting that the one delivered by the P-MPL manufacturer cannot be used long. Among the OVP functions examined, the averaged function between those obtained from the comparison of the P-MPL observations with those of the other two reference lidars seems to be the best proxy at both near- and far-field ranges. In addition, the impact of the OVP function on the accuracy of the retrieved profiles of the total particle backscatter coefficient (PBC) and the particle linear depolarization ratio (PLDR) is examined. The VLDR profile is obtained and compared with that derived from the reference lidar, showing that it needs to be corrected by a small offset value with good accuracy. Once P-MPL measurements are optimally (OVP, VLDR) corrected, both the PBC and PLDR profiles can be accurately derived and are in good agreement with reference aerosol retrievals. Overall, as a systematic requirement for lidar systems, an adequate OVP function determination and VLDR testing analysis needs to be performed on a regular basis to correct the P-MPL measurements in order to derive suitable aerosol products. A dust event observed in Leipzig in June 2019 is used for illustration.


Author(s):  
Ellsworth J. Welton ◽  
James R. Campbell ◽  
Jasper R. Lewis ◽  
Simone Lolli ◽  
Sebastian A. Stewart ◽  
...  

2021 ◽  
Author(s):  
Ioana Elisabeta Popovici ◽  
Zhaoze Deng ◽  
Philippe Goloub ◽  
Xiangao Xia ◽  
Hongbin Chen ◽  
...  

Abstract. The North China Plain (NCP) has been experiencing serious air quality problems since the rapid urbanization and industrialization and has been the subject of many studies over the years. This work presents mapping at a fine scale of the aerosol spatial and vertical variability obtained during the MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) using a van equipped with a micro-pulse LIDAR, a sun photometer and in situ instruments, performing on-road measurements. The campaign was conducted from 5 May to 23 May 2017 and had as a main objective to map the pollutants distribution in Beijing and NCP area. A summary of aerosol properties during all measurement days and a comprehensive case study along the industrial Binhai New Area near Tianjin are presented. The highest AOD at 440 nm (1.34 and 1.9) were recorded during two heavy pollution episodes on 18 May and 19 May 2017, respectively. The lowest PBL (Planetary Boundary Layer) heights (< 1500 m) were recorded during the heavy pollution events, correlated with the highest AOD. Transport of dust from Gobi Desert was captured during the mobile measurements, impacting Beijing in the 9–13 May period. Exploring the NCP outside Beijing provided datasets in regions with lack of aerosol observation sites and allowed mapping higher aerosol concentrations when passing by polluted cities in NCP (Baoding, Tianjin and Tangshan). In this study, we provide the first mass concentration profiles derived from a mobile micro-pulse LIDAR, making use of complementary information on aerosol type from sun photometer and in situ data. The case study of 17 May 2017 revealed mean extinction coefficients of 0.14 ± 0.10 km−1 at 532 nm and total mass concentration of 80 ± 62 μg m−3 in the PBL (< 2000 m) for the mobile transect from Tianjin to Tangshan along the coast of Bohai Sea. The highest extinction (0.56 km−1) and mass concentrations (404 μg m−3) were found in the industrial Binhai New Area. The PM10 and PM2.5 fractions of the total mass concentration profiles were separated using the columnar size distribution derived from sun photometer measurements. A general good agreement was found between the lidar-derived PM concentrations at surface level and the ones recorded at the closest air quality stations along the transect, with the only exception along the industrial region near Tianjin port, where emissions were highly variable.


2021 ◽  
pp. 101082
Author(s):  
A. Aravindhavel ◽  
Sanjay Kumar Mehta ◽  
Saleem Ali ◽  
T.V. Ramesh Reddy ◽  
Vanmathi Annamali ◽  
...  

2021 ◽  
Vol 21 ◽  
Author(s):  
Yueh-Chen Wang ◽  
Sheng-Hsiang Wang ◽  
Jasper R. Lewis ◽  
Shuenn-Chin Chang ◽  
Stephen M. Griffith

2021 ◽  
Vol 60 (1) ◽  
pp. 51-63 ◽  
Author(s):  
James R. Campbell ◽  
Erica K. Dolinar ◽  
Simone Lolli ◽  
Gilberto J. Fochesatto ◽  
Yu Gu ◽  
...  

AbstractCirrus cloud daytime top-of-the-atmosphere radiative forcing (TOA CRF) is estimated for a 2-yr NASA Micro-Pulse Lidar Network (532 nm; MPLNET) dataset collected at Fairbanks, Alaska. Two-year-averaged daytime TOA CRF is estimated to be between −1.08 and 0.78 W·m−2 (from −0.49 to 1.10 W·m−2 in 2017, and from −1.67 to 0.47 W·m−2 in 2018). This subarctic study completes a now trilogy of MPLNET ground-based cloud forcing investigations, following midlatitude and tropical studies by Campbell et al. at Greenbelt, Maryland, and Lolli et al. at Singapore. Campbell et al. hypothesize a global meridional daytime TOA CRF gradient that begins as positive at the equator (2.20–2.59 W·m−2 over land and from −0.46 to 0.42 W·m−2 over ocean at Singapore), becomes neutral in the midlatitudes (0.03–0.27 W·m−2 over land in Maryland), and turns negative moving poleward. This study does not completely confirm Campbell et al., as values are not found as exclusively negative. Evidence in historical reanalysis data suggests that daytime cirrus forcing in and around the subarctic likely once was exclusively negative. Increasing tropopause heights, inducing higher and colder cirrus, have likely increased regional forcing over the last 40 years. We hypothesize that subarctic interannual cloud variability is likely a considerable influence on global cirrus cloud forcing sensitivity, given the irregularity of polar versus midlatitude synoptic weather intrusions. This study and hypothesis lay the basis for an extrapolation of these MPLNET experiments to satellite-based lidar cirrus cloud datasets.


Sign in / Sign up

Export Citation Format

Share Document