low catalyst loading
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 57)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 799
Author(s):  
Svetlana A. Sorokina ◽  
Stepan P. Mikhailov ◽  
Nina V. Kuchkina ◽  
Alexey V. Bykov ◽  
Alexander L. Vasiliev ◽  
...  

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)—a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


Synthesis ◽  
2022 ◽  
Author(s):  
Zhi-Wei Ma ◽  
Chuan-Chuan Wang ◽  
Quan-Jian Lv ◽  
Xiao-Pei Chen ◽  
Ai-Qin Li ◽  
...  

AbstractA new tertiary amine-squaramide organocatalyst has been developed and applied to the asymmetric Michael addition of cyclic diketones to β,γ-unsaturated α-keto esters. The catalyst system performed well with a low catalyst loading of 1 mol% under mild reaction conditions. A series of synthetically and pharmaceutically useful chiral bicyclic compounds were obtained in high yields (up to 97%) with excellent enantioselectivities (up to 99 % ee). Furthermore, this catalytic system can be used efficiently in large-scale reactions with the yields and enantioselectivities being maintained.


Author(s):  
Chao Li ◽  
Duo-Duo Hu ◽  
Ruoxing Jin ◽  
Bing-Bing Wu ◽  
Cheng-Yu Wang ◽  
...  

A photoredox/nickel-catalyzed selective 1,4-arylsulfonation of 1,3-enynes to access structurally diverse sulfone-containing allenes has been established. This radical cascade transformation featured with easy manipulation, mild conditions, low catalyst loading, broad substrate...


2021 ◽  
Vol 21 (2) ◽  
pp. 225
Author(s):  
Dessy Ariyanti ◽  
Filicia Wicaksana ◽  
Wei Gao

In this study, a polyvinylidene difluoride (PVDF) hollow fiber membrane module incorporated with TiO2 was submerged into a photocatalytic reactor to create a hybrid photocatalysis with membrane separation process (a submerged membrane photoreactor, SMPR), for advanced dyes wastewater treatment. The SMPR performance was assessed by the degradation of single component Rhodamine B (RhB) and degradation of mixed dyes (RhB and Methyl orange (MO)) in a binary solution. Several operational parameters such as the amount of catalyst loading, permeate flux, and the effect of aeration were studied. Fouling tendency on the membrane was also investigated to determine the optimum operating conditions. The results show that the synergetic effect of the low catalyst loading and permeate flux creates the environment for optimum light penetration for high photocatalytic activity as the hybrid system with low catalyst loading (0.5 g/L) and 66 L/m2h of flux with aeration at 1.3 L/min has proven to increase the photocatalysis performance by 20% with additional catalyst recovery. In addition, applying the low catalyst loading and flux permeate with aeration brings minimal fouling problems.


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
Parmita Phukan ◽  
Akshay Kulshrestha ◽  
Arvind Kumar ◽  
Srijita chakraborti ◽  
Pronobesh Chattopadhyay ◽  
...  

2021 ◽  
Author(s):  
Zhenhao Zhang ◽  
Nazarii Sabat ◽  
Gilles Frison ◽  
Angela Marinetti ◽  
Xavier GUINCHARD

Gold(I) complexes of a new chiral phosphoric acid functionalized phosphine of the CPA-Phos series enable the enantioselective multicomponent reactions between aldehydes, hydroxylamines and cyclic yne-enones, leading to 3,4-dihydro-1H-furo[3,4-d][1,2]oxazines. This represents the first example of highly enantioselective multicomponent reaction in gold(I) catalysis. The reactions proceed at low catalyst loading, provide high yields, total diastereoselectivity and enantiomeric excesses up to 99%. Silver-free conditions can be applied. The method has a very broad scope, as it applies to both aliphatic and aromatic aldehydes and hydroxylamines, to a variety of cyclic yne-enones, as well as to yne-enone derived oximes. DFT calculations are reported that enlighten the enantiocontrol pathway.


2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Srivastava

: In the present manuscript, we easily synthesized three different types of ionic liquid supported 3-quinuclidinone organocatalysts such as [PyAmEQ][BF4] (Py-CATALYST-1), [PyAmEQ][PF6] (Py-CATALYST-2), and [PyAmEQ][NTf2] (Py-CATALYST-3). After performing the careful characterization of the above catalysts with sophisticated analytical techniques, we utilized them as a catalyst to study the passive Morita-Baylis-Hillman reaction. The corresponding Morita-Baylis-Hillman adducts were easily isolated, followed by the simple ether extraction method. Moreover, the above protocol also promoted low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. We easily recycled the catalytic system for 5 runs with no noticeable loss in the chemical yield. Additionally, Py-CATALYST-3 was also used to prepare biologically active materials, i.e., N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivatives.


2021 ◽  
Author(s):  
Ankush Sheoran ◽  
Komal ◽  
Jaspreet Kaur ◽  
Paramdeep Kaur ◽  
Jyoti Agarwal ◽  
...  

Abstract Graphene based magnetic nanohybrids have engrossed considerable research curiosity because of their exceptional properties and diverse applications associated with green chemistry. In this regard, a practical, facile and regioselective preparation of 1,2-diamines from N-tosylaziridine/(S)-(+)-2-Benzyl-1-(p-tolylsulfonyl)aziridine and aryl amines in the presence of magnetically separable graphene based nanohybrid (CoFe@rGO) has been proposed under mild and solvent free conditions. The FT-IR, FE-SEM, XRD and EDX spectroscopic analysis confirmed the formation of the CoFe@rGO nanohybrids. For unsymmetrical aziridine, nucleophilic attack of aryl amines was observed to take place selectively at the more substituted carbon atom of aziridine ring. Environmentally benign, efficient, shorter reaction time, solvent-free conditions, low catalyst loading, excellent reaction yields and reusability of the catalyst for six consecutive runs without significant loss in its activity are the key advantages of this protocol.


2021 ◽  
Vol 08 ◽  
Author(s):  
Vivek Srivastava

Background: Baylis-Hillman reaction suffers from the requirement of cheap starting materials, easy reaction protocol, possibility to create the chiral center in the reaction product has increased the synthetic efficacy of this reaction, and high catalyst loading, low reaction rate, and poor yield. Objective: The extensive use of various functional or non-functional ionic liquids (ILs) with organocatalyst increases the reaction rate of various organic transformations as a reaction medium and as a support to anchor the catalysts. Methods: In this manuscript, we have demonstrated the synthesis of quinuclidine-supported trimethylamine-based functionalized ionic liquid as a catalyst for the Baylis-Hillman reaction. Results: We obtained the Baylis-Hillman adducts in good, isolated yield, low catalyst loading, short reaction time, broad substrate scope, accessible product, and catalyst recycling. N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide was also successfully synthesized using CATALYST-3 promoted Baylis-Hillman reaction. Conclusion: We successfully isolated the 25 types of Baylis-Hillman adducts using three different quinuclidine-supported ammonium-based ionic liquids such as Et3AmQ][BF4] (CATALYST-1), [Et3AmQ][PF6] (CATALYST-2), and [TMAAmEQ][NTf2](CATALYST-3) as new and efficient catalysts. Tedious and highly active N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivative was also synthesized using CATALYST-3 followed by Baylis-Hillman reaction. Generally, all the responses demonstrated higher activity and yielded high competition with various previously reported homogenous and heterogeneous Catalytic systems. Easy catalyst and product recovery followed by six catalysts recycling were the added advantages of the prosed catalytic system.


Sign in / Sign up

Export Citation Format

Share Document