Precision Observables
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 258 ◽  
pp. 04002
Author(s):  
Vladyslav Shtabovenko

The width difference ΔΓs that can be extracted from lifetime measurements of the two mass eigenstates of the Bs0−B¯s0 system is one of the key flavor precision observables and has been experimentally measured at per cent level accuracy. The current theory prediction is much less accurate and a sizable reduction of scale uncertainties can only be achieved by means of evaluating the uncalculated 2- and 3-loop QCD corrections. This is precisely the issue addressed in this work where we report on the results that have been obtained so far and explain some of the technical and conceptual challenges that we encountered in the course of our calculations.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Andreas Crivellin ◽  
Martin Hoferichter ◽  
Matthew Kirk ◽  
Claudio Andrea Manzari ◽  
Luc Schnell

Abstract New-physics (NP) constraints on first-generation quark-lepton interactions are particularly interesting given the large number of complementary processes and observables that have been measured. Recently, first hints for such NP effects have been observed as an apparent deficit in first-row CKM unitarity, known as the Cabibbo angle anomaly, and the CMS excess in $$ q\overline{q} $$ q q ¯ → e+e−. Since the same NP would inevitably enter in searches for low-energy parity violation, such as atomic parity violation, parity-violating electron scattering, and coherent neutrino-nucleus scattering, as well as electroweak precision observables, a combined analysis is required to assess the viability of potential NP interpretations. In this article we investigate the interplay between LHC searches, the Cabibbo angle anomaly, electroweak precision observables, and low-energy parity violation by studying all simplified models that give rise to tree-level effects related to interactions between first-generation quarks and leptons. Matching these models onto Standard Model effective field theory, we derive master formulae in terms of the respective Wilson coefficients, perform a complete phenomenological analysis of all available constraints, point out how parity violation can in the future be used to disentangle different NP scenarios, and project the constraints achievable with forthcoming experiments.


2021 ◽  
Vol 136 (9) ◽  
Author(s):  
S. Heinemeyer ◽  
S. Jadach ◽  
J. Reuter

AbstractHigh-precision experimental measurements of the properties of the Higgs boson at $$\sim 125$$ ∼ 125  GeV as well as electroweak precision observables such as the W-boson mass or the effective weak leptonic mixing angle are expected at future $$e^+e^-$$ e + e - colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the standard model and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
B. C. Allanach ◽  
J. Eliel Camargo-Molina ◽  
Joe Davighi

AbstractWhile it is known that third family hypercharge models can explain the neutral current B-anomalies, it was hitherto unclear whether the $$Z-Z^\prime $$ Z - Z ′ mixing predicted by such models could simultaneously fit electroweak precision observables. Here, we perform global fits of several third family hypercharge models to a combination of electroweak data and those data pertinent to the neutral current B-anomalies. While the Standard Model is in tension with this combined data set with a p-value of .0007, simple versions of the models (fitting two additional parameters each) provide much improved fits. The original Third Family Hypercharge Model, for example, has a p-value of $${.065}$$ . 065 , with $$\sqrt{\Delta \chi ^2}=6.5\sigma $$ Δ χ 2 = 6.5 σ .


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Jasmina Nasufi ◽  
...  

AbstractRecent discrepancies between theoretical predictions and experimental data in multi-lepton plus b-jets analyses for the $$t{\bar{t}}W^\pm $$ t t ¯ W ± process, as reported by the ATLAS collaboration, have indicated that more accurate theoretical predictions and high precision observables are needed to constrain numerous new physics scenarios in this channel. To this end we employ NLO QCD computations with full off-shell top quark effects included to provide theoretical predictions for the $$\mathcal{R}= \sigma _{t{\bar{t}}W^+}/\sigma _{t{\bar{t}}W^-}$$ R = σ t t ¯ W + / σ t t ¯ W - cross section ratio at the LHC with $$\sqrt{s}=13$$ s = 13 TeV. Depending on the transverse momentum cut on the b-jet we obtain 2–3% theoretical precision on $$\mathcal{R}$$ R , which should help to shed some light on new physics effects that can reveal themselves only once sufficiently precise Standard Model theoretical predictions are available. Furthermore, triggered by these discrepancies we reexamine the charge asymmetry of the top quark and its decay products in the $$t{\bar{t}}W^\pm $$ t t ¯ W ± production process. In the case of charge asymmetries, that are uniquely sensitive to the chiral nature of possible new physics in this channel, theoretical uncertainties below 15% are obtained. Additionally, the impact of the top quark decay modelling is scrutinised by explicit comparison with predictions in the narrow-width approximation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej J. Buras ◽  
Andreas Crivellin ◽  
Fiona Kirk ◽  
Claudio Andrea Manzari ◽  
Marc Montull

Abstract New neutral heavy gauge bosons (Z′) are predicted within many extensions of the Standard Model. While in case they couple to quarks the LHC bounds are very stringent, leptophilic Z′ bosons (even with sizable couplings) can be much lighter and therefore lead to interesting quantum effects in precision observables (like (g − 2)μ) and generate flavour violating decays of charged leptons. In particular, $$ \mathrm{\ell}\to \mathrm{\ell}^{\prime }v\overline{v} $$ ℓ → ℓ ′ v v ¯ decays, anomalous magnetic moments of charged leptons, ℓ → ℓ′γ and ℓ → 3ℓ′ decays place stringent limits on leptophilic Z′ bosons. Furthermore, in case of mixing Z′ with the SM Z, Z pole observables are affected. In light of these many observables we perform a global fit to leptophilic Z′ models with the main goal of finding the bounds for the Z′ couplings to leptons. To this end we consider a number of scenarios for these couplings. While in generic scenarios correlations are weak, this changes once additional constraints on the couplings are imposed. In particular, if one considers an Lμ− Lτ symmetry broken only by left-handed rotations, or considers the case of τ − μ couplings only. In the latter setup, on can explain the (g − 2)μ anomaly and the hint for lepton flavour universality violation in $$ \tau \to \mu v\overline{v}/\tau \to ev\overline{v} $$ τ → μv v ¯ / τ → ev v ¯ without violating bounds from electroweak precision observables.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Supratim Das Bakshi ◽  
Joydeep Chakrabortty ◽  
Michael Spannowsky

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Lisong Chen ◽  
Ayres Freitas

Abstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ .


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Véronique Bernard ◽  
Sébastien Descotes-Genon ◽  
Luiz Vale Silva

Abstract We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak ρ parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon ∆r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU(2)L×SU(2)R bi-doublet, which is the case most commonly considered in the literature, but also by the SU(2)L doublet.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jason Aebischer ◽  
Jacky Kumar

Abstract We study Yukawa Renormalization Group (RG) running effects in the context of the Standard Model Effective Theory (SMEFT). The Yukawa running being flavour dependent leads to RG-induced off-diagonal entries, so that initially diagonal Yukawa matrices at the high scale have to be rediagonalized at the electroweak (EW) scale. Performing such flavour rotations can lead to flavour violating operators which differ from the ones obtained through SMEFT RG evolution. We show, that these flavour rotations can have a large impact on low-energy phenomenology. In order to demonstrate this effect, we com- pare the two sources of flavour violation numerically as well as analytically and study their influence on several examples of down-type flavour transitions. For this purpose we con- sider $$ {B}_s-{\overline{B}}_s $$ B s − B ¯ s mixing, b → sγ, b → sℓℓ as well as electroweak precision observables. We show that the rotation effect can be comparable or even larger than the contribution from pure RGE evolution of the Wilson coefficients.


Sign in / Sign up

Export Citation Format

Share Document