energy retrofit
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 185)

H-INDEX

29
(FIVE YEARS 7)

Energy Policy ◽  
2022 ◽  
Vol 160 ◽  
pp. 112658
Author(s):  
Marcello Avanzini ◽  
Manuel Duarte Pinheiro ◽  
Ricardo Gomes ◽  
Catarina Rolim

2021 ◽  
Vol 13 (24) ◽  
pp. 13524
Author(s):  
Domenico Curto ◽  
Vincenzo Franzitta ◽  
Andrea Guercio ◽  
Domenico Panno

Electrical and thermal consumption related to buildings, whether civil, commercial, public, or of any other kind, is very much in focus today. With today’s targets for energy savings, reduction of consumption, and environmental impact, it is necessary to carry out energy retrofits to modernize installations and their management. The realization of an effective improvement requires a careful analysis of the case study because each category of building has different requirements such as different load profiles and different installations and needs. This was carried out by studying the electrical and thermal load profiles. A good initial energy audit can provide the retrofit solutions capable of achieving the reduction of energy consumption and the emission of climate-changing gases into the atmosphere. A case study, carried out by the Department of Engineering of Palermo, showed how it is possible to perform an energy retrofit to modernize the energy system of the student dormitory at the University of Palermo. The paper presented a study carried out by programming a series of interlinked calculations in Microsoft Excel. In order to quantify the energy savings of the structure under examination, it is necessary to enter some input data, thanks to which all the formulas implemented in the calculation software were automatically completed. The programming of the calculations makes it possible to carry out an energy retrofit with interventions on the building envelope and the installations. The desire to program an automated calculation by modifying only the input data is intended to replicate a study on other buildings with the same peculiarities. In this way, it is possible to verify which retrofit hypotheses would be useful to upgrade old public administration buildings. In the analyzed case study, 65% of electrical energy and 33% of thermal energy could be saved by replacing generation systems, installing a co-generator, replacing windows, and replacing lamps with LED ones.


2021 ◽  
pp. 111776
Author(s):  
Yannis MERLET ◽  
Simon ROUCHIER ◽  
Arnaud JAY ◽  
Nicolas CELLIER ◽  
Monika WOLOSZYN

2021 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Graziano Salvalai ◽  
Marta Maria Sesana

Energy retrofit strategies for buildings represent a major challenge for the achievement of EU decarbonization goals. In 2002, the Energy Performance of Building Directive introduced energy certificates to measure and compare building energy performance, to frame the more suitable renovation actions, and develop financing schemes. However, since its implementation, this instrument remained quite unexploited. In this framework, the EPC RECAST H2020 project aims at developing a new generation of EPCs with a focus on existing residential buildings. Within the project, the paper focuses on the monitoring strategy that has been defined and tested to validate, with real data, what is declared in Energy Performance Certificates.


Author(s):  
Linyun Zhang ◽  
Feiming Huang ◽  
Lu Lu ◽  
Xinwen Ni ◽  
Sajid Iqbal
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7584
Author(s):  
Saman Abolghasemi Moghaddam ◽  
Magnus Mattsson ◽  
Arman Ameen ◽  
Jan Akander ◽  
Manuel Gameiro Da Silva ◽  
...  

Low-emissivity (low-E) window films are designed to improve the thermal comfort and energy performance of buildings. These films can be applied to different glazing systems without having to change the whole window. This makes it possible to apply films to windows in old and historical buildings for which preservation regulations often require that windows should remain unchanged. This research aims to investigate the impacts of low-E window films on the energy performance and thermal comfort of a three-story historical stone building in the cold climate of Sweden using the simulation software “IDA ICE”. On-site measurements were taken to acquire thermal and optical properties of the windows. This research shows that the application of the low-emissivity window film on the outward-facing surface of the inner pane of the double-glazed windows helped to reduce heat loss through the windows in winter and unwanted heat gains in summer by almost 36% and 35%, respectively. This resulted in a 6% reduction in the building’s annual energy consumption for heating purposes and a reduction in the percentage of total occupant hours with thermal dissatisfaction from 14% (without the film) to 11% (with the film). However, the relatively high price of the films and low price of district heating results in a rather long payback period of around 30 years. Thus, the films seem scarcely attractive from a purely economic viewpoint, but may be warranted for energy/environmental and thermal comfort reasons.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012028
Author(s):  
B Conley ◽  
M Carver ◽  
S Brideau

Abstract NRCan undertook a proof-of-concept project to retrofit a small building with prefabricated wall panels in 2017 in Ottawa, Canada. The retrofit used two wall panel designs: nailbase and woodframe. The Nailbase panel consisted of fiberglass batt, an expanded polystyrene (EPS) core, oriented strand board (OSB) sheathing, a rainscreen, and cladding. The Woodframe panel also featured OSB sheathing and included a 90 mm stand-off gap filled with dense-packed, fibrous insulation. A side-by-side comparison of cost, constructability, and performance was performed. The wall assemblies were instrumented to monitor the temperature, relative humidity, and moisture content of sensitive layers. The data was used to evaluate the hygrothermal performance, moisture accumulation, and risk of associated problems such as mould growth. This paper presents the monitored hygrothermal data from 2017 to 2021, compares the two approaches and assesses their feasibility. During construction, some of the fibrous insulation may have been wetted by wind-driven snow before completion. The data showed that this moisture was able to dissipate without significant risk. The sheathing of the Woodframe panel experienced a higher peak moisture content during the dry-out period. Otherwise, both panel designs showed limited potential for mould growth on monitored surfaces over the monitored period.


Sign in / Sign up

Export Citation Format

Share Document