photovoltaic technologies
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 108)

H-INDEX

33
(FIVE YEARS 7)

Energy Policy ◽  
2022 ◽  
Vol 161 ◽  
pp. 112772
Author(s):  
Elena Lucchi ◽  
Isabella Dall'Orto ◽  
Alessia Peluchetti ◽  
Linda Toledo ◽  
Martina Pelle ◽  
...  

2022 ◽  
pp. 347-393
Author(s):  
Mohammad Aminul Islam ◽  
Md. Akhtaruzzaman ◽  
Nowshad Amin ◽  
Kamaruzzaman Sopian

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7836
Author(s):  
Anna Kuczyńska-Łażewska ◽  
Ewa Klugmann-Radziemska ◽  
Agnieszka Witkowska

Due to the development of new photovoltaic technologies, there is a need to research new recycling methods for these new materials. The recovery of metals from photovoltaic (PV) modules would reduce the consumption of raw materials. Therefore, the development of recycling technologies for used and damaged modules of newer generations is important for environmental reasons. The aim of the research is to shed light on the nature of the chemical reactions that occur in recycling technology for second-generation photovoltaic modules. This work is focused mainly on cells made of Cadmium Telluride (CdTe). It was proven that prior thermal delamination was necessary. Moreover, an improvement in understanding of the recovery process depending on used leaching solution was achieved.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1530
Author(s):  
Zhenbang Wei ◽  
Langkun Chen ◽  
Kunzhu Liu ◽  
Shenghua Liu ◽  
Xiangguo Li ◽  
...  

The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs. In this review, we summarize the most recent successful applications of the 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, and g-C3N4, etc., adapted in the charge transporting layer, the active layer, and the electrode of the OSCs, respectively, for boosting the PCE and stability of the devices. The strengths and weaknesses of the 2D materials in the application of OSCs are also reviewed in details. Additionally, the challenges, commercialization potentials, and prospects for the further development of 2D materials-based OSCs are outlined in the end.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7935
Author(s):  
Michelle Kitayama da Silva ◽  
Mehreen Saleem Gul ◽  
Hassam Chaudhry

An evaluation of the degradation effects on photovoltaic modules is essential to minimise uncertainties in the system operation. Bifacial photovoltaic technology is attracting attention due to the capacity of generating energy from the front and rear sides. This paper presents a review of degradation factors, for both conventional monofacial and bifacial photovoltaic modules, to highlight how the current and voltage characteristics of these technologies are affected by degradation. Microcracking, encapsulant discoloration, and light induced degradation seem to have similar effects on both modules. Contrarily, bifacial modules are more prone to potential induced degradation as the electromagnetic shielding is affected by the bifaciality. Bifacial devices are less affected by light and elevated temperature induced degradation. The degradation (1.3%) is similar for both technologies, up to 40 kWh/m2 of solar radiation. Above this value, monofacial degradation increases faster, reaching values of 7%. For tilted systems, the front side soiling degradation of 0.30% per day is similar for both technologies. For vertical systems, soiling loss for bifacial is considerably lower with values of 0.02% per day.


2021 ◽  
Vol 13 (22) ◽  
pp. 12609
Author(s):  
Valeria D’Ambrosio ◽  
Mario Losasso ◽  
Enza Tersigni

The scenario that emerges from scientific research on the use of BIPV systems in architecture shows that photovoltaic technologies and systems have reached a significant development in production and installation, becoming a strategic approach in the field of energy efficiency and enabling a progressive decarbonisation of the building stock. Still, knowledge and methods of architectural integration are not fully developed, especially in Italy. The present paper reports the results of a research activity that, systematising the main criteria and indicators for assessing the integrability of BIPVs in architecture, has led to the development of BIPV Product and Case Study Catalogues that define an up-to-date state of the art on aspects of design and technological innovation using BIPV systems and components. Catalogues have been created with the objective of contributing to the growth of knowledge on the most up-to-date methods of design by implementing a ‘technology transfer’ from good practice, in which photovoltaic systems are an integral part of the design concept and construction techniques of the architecture. The analysis related to the production of BIPV systems and components and their application in architectural projects allows one to highlight the main critical factors in the diffusion throughout the country and to identify the main research demand arising from the specific national situation.


Solar RRL ◽  
2021 ◽  
Author(s):  
Yuanhang Cheng ◽  
Zixin Zeng ◽  
Tianyuan Liu ◽  
Ying Wang ◽  
Carlos D. Rodríguez-Gallegos ◽  
...  

2021 ◽  
Vol 38 (10) ◽  
pp. 107801
Author(s):  
Zihan Qu ◽  
Fei Ma ◽  
Yang Zhao ◽  
Xinbo Chu ◽  
Shiqi Yu ◽  
...  

In the last decade, perovskite solar cells (PSCs) have greatly drawn researchers’ attention, with the power conversion efficiency surging from 3.8% to 25.5%. PSCs possess the merits of low cost, simple fabrication process and high performance, which could be one of the most promising photovoltaic technologies in the future. In this review, we focus on the summary of the updated progresses in single junction PSCs including efficiency, stability and large area module. Then, the important progresses in tandem solar cells are briefly discussed. A prospect into the future of the field is also included.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raúl R. Cordero ◽  
Sarah Feron ◽  
Edgardo Sepúlveda ◽  
Alessandro Damiani ◽  
Juan M. Carrera ◽  
...  

AbstractSurface albedo is an important forcing parameter that drives the radiative energy budget as it determines the fraction of the downwelling solar irradiance that the surface reflects. Here we report on ground-based measurements of the spectral albedo (350–2200 nm) carried out at 20 sites across a North–South transect of approximately 1300 km in the Atacama Desert, from latitude 18° S to latitude 30° S. These spectral measurements were used to evaluate remote sensing estimates of the albedo derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). We found that the relative mean bias error (RMBE) of MODIS-derived estimates was within ± 5% of ground-based measurements in most of the Atacama Desert (18–27° S). Although the correlation between MODIS-derived estimates and ground-based measurements remained relatively high (R= 0.94), RMBE values were slightly larger in the southernmost part of the desert (27–30° S). Both MODIS-derived data and ground-based measurements show that the albedo at some bright spots in the Atacama Desert may be high enough (up to 0.25 in visible range) for considerably boosting the performance of bifacial photovoltaic technologies (6–12%).


Sign in / Sign up

Export Citation Format

Share Document