variational approach
Recently Published Documents


TOTAL DOCUMENTS

2483
(FIVE YEARS 283)

H-INDEX

77
(FIVE YEARS 9)

2022 ◽  
Vol 309 ◽  
pp. 427-454
Author(s):  
Jiangyan Liang ◽  
Ning Jiang ◽  
Chun Liu ◽  
Yiwei Wang ◽  
Teng-Fei Zhang

Author(s):  
Xiaoyuan Liu ◽  
Anthony Angone ◽  
Ruslan Shaydulin ◽  
Ilya Safro ◽  
Yuri Alexeev ◽  
...  

2021 ◽  
Vol 127 (27) ◽  
Author(s):  
Alexander Ahrens ◽  
Chenhang Huang ◽  
Matt Beutel ◽  
Cody Covington ◽  
Kálmán Varga

2021 ◽  
pp. 106-117
Author(s):  
S. O Papkov

It has been for the first time that an analytical solution to the problem of free vibrations of a cantilevered thick orthotropic plate is presented. This problem is quite cumbersome for using the exact methods of the theory of elasticity; therefore, methods based on the variational approach were developed to solve it. The paper suggests using the superposition method to construct a general solution of the vibration equations of a plate in the series form of particular solutions obtained with the help of a variables separation. The particular solutions of one of the coordinates are built in the form of trigonometric functions of a special type (modified trigonometric system). The constructed solution, in contrast to the solutions known in the literature on the basis of the variational approach, accurately satisfies the equations of vibrations. The use of a modified trigonometric system of functions makes it possible to obtain uniform formulas for even and odd vibration shapes and to reduce the quantity of boundary conditions on the plate sides from twelve to nine ones, while five of the nine boundary conditions are also accurately satisfied. The structure of the presented solution on the plate boundary is such that, each of the kinematic or force characteristics of the plate is represented as a sum of two series, i.e. a trigonometric series and a series in hyperbolic functions. Remaining boundary conditions make it possible to obtain an infinite system of linear algebraic equations with respect to the unknown coefficients of the series representing the solution. The convergence of the solution by the reduction method of the infinite system is investigated numerically. Examples of the numerical implementation are given; numerical studies of the spectrum of natural frequencies of the cantilevered thick plate were carried out based on the obtained solution, both with varying elastic characteristics of the material and with varying geometric parameters.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
M. A. Braun

AbstractThe four-pomeron vertex is studied in the perturbative QCD. Its dominating terms of the leading (zeroth and first) orders in the coupling constant and subdominant in the number of colors are constructed. The vertex consists of two terms, one with a derivative in rapidity $$\partial _y$$ ∂ y and the other with the BFKL interaction between pomerons. The corresponding part of the action and equations of motion are found. The iterative solution of the latter is possible only for rapidities smaller than 2 and quite large coupling constant $$\alpha _s$$ α s , of the order or greater than unity, when the quadruple pomeron interaction is relatively small. Also iteration of the part with $$\partial _y$$ ∂ y is unstable in the infrared region and compels to introduce an infrared cut. The variational approach with simple trying functions allows to find the minimum of the action at $$\alpha _s$$ α s of the order 0.2 and rapidities up to 25. Numerical estimates for O–O collisions show that actually the influence of the quadruple pomeron interaction turns out to be rather small.


2021 ◽  
Vol 2092 (1) ◽  
pp. 012001
Author(s):  
Yu Jiang ◽  
Gen Nakamura ◽  
Kenji Shirota

Abstract This paper deals with an inverse problem for recovering the viscoelasticity of a living body from MRE (Magnetic Resonance Elastography) data. Based on a viscoelastic partial differential equation whose solution can approximately simulate MRE data, the inverse problem is transformed to a least square variational problem. This is to search for viscoelastic coefficients of this equation such that the solution to a boundary value problem of this equation fits approximately to MRE data with respect to the least square cost function. By computing the Gateaux derivatives of the cost function, we minimize the cost function by the projected gradient method is proposed for recovering the unknown coefficients. The reconstruction results based on simulated data and real experimental data are presented and discussed.


2021 ◽  
Vol 14 (11) ◽  
pp. 7355-7368
Author(s):  
Sheng Li ◽  
Ke Du

Abstract. Optical remote sensing (ORS) combined with the computerized tomography (CT) technique is a powerful tool to retrieve a two-dimensional concentration map over an area under investigation. Whereas medical CT usually uses a beam number of hundreds of thousands, ORS-CT usually uses a beam number of dozens, thus severely limiting the spatial resolution and the quality of the reconstructed map. The smoothness a priori information is, therefore, crucial for ORS-CT. Algorithms that produce smooth reconstructions include smooth basis function minimization, grid translation and multiple grid (GT-MG), and low third derivative (LTD), among which the LTD algorithm is promising because of the fast speed. However, its theoretical basis must be clarified to better understand the characteristics of its smoothness constraints. Moreover, the computational efficiency and reconstruction quality need to be improved for practical applications. This paper first treated the LTD algorithm as a special case of the Tikhonov regularization that uses the approximation of the third-order derivative as the regularization term. Then, to seek more flexible smoothness constraints, we successfully incorporated the smoothness seminorm used in variational interpolation theory into the reconstruction problem. Thus, the smoothing effects can be well understood according to the close relationship between the variational approach and the spline functions. Furthermore, other algorithms can be formulated by using different seminorms. On the basis of this idea, we propose a new minimum curvature (MC) algorithm by using a seminorm approximating the sum of the squares of the curvature, which reduces the number of linear equations to half that in the LTD algorithm. The MC algorithm was compared with the non-negative least square (NNLS), GT-MG, and LTD algorithms by using multiple test maps. The MC algorithm, compared with the LTD algorithm, shows similar performance in terms of reconstruction quality but requires only approximately 65 % the computation time. It is also simpler to implement than the GT-MG algorithm because it directly uses high-resolution grids during the reconstruction process. Compared with the traditional NNLS algorithm, it shows better performance in the following three aspects: (1) the nearness of reconstructed maps is improved by more than 50 %, (2) the peak location accuracy is improved by 1–2 m, and (3) the exposure error is improved by 2 to 5 times. Testing results indicated the effectiveness of the new algorithm according to the variational approach. More specific algorithms could be similarly further formulated and evaluated. This study promotes the practical application of ORS-CT mapping of atmospheric chemicals.


Sign in / Sign up

Export Citation Format

Share Document