epithelial lining fluid
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 58)

H-INDEX

47
(FIVE YEARS 6)

Author(s):  
Zoe Oesterreicher ◽  
Sabine Eberl ◽  
Beatrix Wulkersdorfer ◽  
Peter Matzneller ◽  
Claudia Eder ◽  
...  

Abstract Background and Objective In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. Methods Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography–tandem mass spectrometry. Results The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration–time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration–time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration–time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. Conclusions Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. Clinical Trial Registration ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).


2021 ◽  
Vol 12 ◽  
Author(s):  
Renee W. Y. Chan ◽  
Shaojun Liu ◽  
Jonathan Y. Cheung ◽  
Joseph G. S. Tsun ◽  
Kate C. Chan ◽  
...  

BackgroundAlthough the serological antibody responses induced by SARS-CoV-2 vaccines are well characterized, little is known about their ability to elicit mucosal immunity.ObjectivesThis study aims to examine and compare the mucosal and systemic responses of recipients of two different vaccination platforms: mRNA (Comirnaty) and inactivated virus (CoronaVac).MethodsSerial blood and nasal epithelial lining fluid (NELF) samples were collected from the recipients of either Comirnaty or CoronaVac. The plasma and NELF immunoglobulins A and G (IgA and IgG) specific to SARS-CoV-2 S1 protein (S1) and their neutralization effects were quantified.ResultsComirnaty induced nasal S1-specific immunoglobulin responses, which were evident as early as 14 ± 2 days after the first dose. In 64% of the subjects, the neutralizing effects of NELF persisted for at least 50 days. Moreover, 85% of Comirnaty recipients exhibited S1-specific IgA and IgG responses in plasma by 14 ± 2 days after the first dose. By 7 ± 2 days after the booster, all plasma samples possessed S1-specific IgA and IgG responses and were neutralizing. The induction of S1-specific plasma antibodies by CoronaVac was IgG dominant, and 83% of the subjects possessed S1-specific IgG by 7 ± 2 days after the booster, with neutralizing effects.ConclusionComirnaty induces S1-specific IgA and IgG responses with neutralizing activity in the nasal mucosa; a similar response is not seen with CoronaVac.Clinical ImplicationThe presence of a nasal response with mRNA vaccine may provide additional protection compared with inactivated virus vaccine. However, whether such widespread immunological response may produce inadvertent adverse effects in other tissues warrants further investigation.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Andrew F. Shorr ◽  
Christopher J. Bruno ◽  
Zufei Zhang ◽  
Erin Jensen ◽  
Wei Gao ◽  
...  

Abstract Background The randomized, double-blind, phase 3 ASPECT-NP trial evaluated the efficacy of 3 g of ceftolozane/tazobactam (C/T) versus 1 g of meropenem infused every 8 h for 8 to 14 days for treatment of adults with hospital-acquired bacterial pneumonia (HABP) or ventilator-associated bacterial pneumonia (VABP). We assessed the probability of target attainment and compared efficacy outcomes from ASPECT-NP in participants with augmented renal clearance (ARC) versus those with normal renal function. Methods Baseline renal function was categorized as normal renal function (creatinine clearance 80–130 mL/min) or ARC (creatinine clearance > 130 mL/min). Population pharmacokinetic models informed Monte Carlo simulations to assess probability of target attainment in plasma and pulmonary epithelial lining fluid. Outcomes included 28-day all-cause mortality and clinical cure and per-participant microbiologic cure rates at the test-of-cure visit. Results A > 99% and > 80% probability of target attainment was demonstrated for ceftolozane and tazobactam, respectively, in simulated plasma and epithelial lining fluid. Within treatment arms, 28-day all-cause mortality rates in participants with normal renal function (C/T, n = 131; meropenem, n = 123) and ARC (C/T, n = 96; meropenem, n = 113) were comparable (data comparisons presented as rate; treatment difference [95% CI]) (C/T: normal renal function, 17.6%; ARC, 17.7%; 0.2 [− 9.6 to 10.6]; meropenem: normal renal function, 20.3%; ARC, 17.7%; − 2.6 [− 12.6 to 7.5]). Clinical cure rates at test-of-cure were also comparable across renal function groups within treatment arms (C/T: normal renal function, 57.3%; ARC, 59.4%; − 2.1 [− 14.8 to 10.8]; meropenem: normal renal function, 59.3%; ARC, 57.5%; 1.8 [− 10.6 to 14.2]). Per-participant microbiologic cure rates at test-of-cure were consistent across renal function groups within treatment arms (C/T: normal renal function, 72.2% [n/N = 70/97]; ARC, 71.4% [n/N = 55/77]; 0.7 [− 12.4 to 14.2]; meropenem: normal renal function, 75.0% [n/N = 66/88]; ARC, 70.0% [n/N = 49/70]; 5.0 [− 8.7 to 19.0]). Conclusions C/T and meropenem resulted in 28-day all-cause mortality, clinical cure, and microbiologic cure rates that were comparable between participants with ARC or normal renal function. In conjunction with high probability of target attainment, these results confirm that C/T (3 g) every 8 h is appropriate in patients with HABP/VABP and ARC. Trial registration ClinicalTrials.gov identifier: NCT02070757, registered February 25, 2014; EudraCT: 2012-002862-11.


2021 ◽  
Author(s):  
Renee Chan ◽  
Kate C Chan ◽  
Grace CY Lui ◽  
Joseph GS Tsun ◽  
Kathy YY Chan ◽  
...  

Conjunctival and nasal mucosal antibody responses in thirty-four paediatric and forty-seven adult COVID-19 patients were measured. The mucosal antibody was IgA dominant. In the nasal epithelial lining fluid (NELF) of asymptomatic paediatric patients, SARS-CoV-2 spike protein 1 (S1) specific immunoglobulin A (IgA) was induced early. Their plasma S1-specific IgG levels were higher than symptomatic patients. More adult with mild disease had NELF S1-specific IgA than those with severe/critical illness. Within the first week of diagnosis, higher S1-specific antibodies in NELF and plasma and lower vial loads were detected in paediatric than adult patients with mild disease. The IgA and IgG levels correlated positively with the surrogate neutralization readout. The detectable NELF neutralizing S1-specific IgA in the first week after diagnosis correlated with a rapid decline in viral load. This study highlights the effect of nasal IgA in limiting the SARS-CoV-2 replication and provides complementary information to the serum antibody measurements.


2021 ◽  
Author(s):  
Elise Hickman ◽  
Andrew Hinton ◽  
Bryan Zorn ◽  
Meghan E. Rebuli ◽  
Carole Robinette ◽  
...  

Abstract Background E-cigarettes are often perceived as safer than cigarettes, but previous research suggests that e-cigarettes can alter respiratory innate immune function. The respiratory microbiome plays a key role in respiratory host defense, but the effect of e-cigarettes on the respiratory microbiome has not been studied. Results Using 16S rRNA gene sequencing on nasal epithelial lining fluid samples from adult e-cigarette users, smokers, and nonsmokers, followed by novel computational analysis of pairwise log ratios, we determined that e-cigarette use and smoking causes differential respiratory microbiome dysbiosis, which was further affected by sex. We also collected nasal lavage fluid for analysis of immune mediators associated with host-microbiota interactions. Our analysis identified disruption of the relationships between host-microbiota mediators in the nose of e-cigarette users and smokers, which is indicative of disrupted respiratory mucosal immune responses. Conclusions Our data indicate that e-cigarette use, cigarette use, and sex modify the nasal microbiome and nasal host-microbiota interactions. Our approach also provides a novel platform that robustly identifies host immune dysfunction caused by e-cigarette use or smoking.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Ewa Janosz ◽  
Miriam Hetzel ◽  
Hanna Spielmann ◽  
Srinu Tumpara ◽  
Charlotte Rossdam ◽  
...  

AbstractInherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb–/– mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.


Sign in / Sign up

Export Citation Format

Share Document