langmuir trough
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 285
Author(s):  
Yulia S. Dyuzhikova ◽  
Anton A. Anisimov ◽  
Alexander S. Peregudov ◽  
Mikhail I. Buzin ◽  
Galina G. Nikiforova ◽  
...  

New non-crystallizable low-dispersity star-shaped polydimethylsiloxanes (PDMS) containing stereoregular cis-tetra(organo)(dimethylsiloxy)cyclotetrasiloxanes containing methyl-, tolyl- and phenyl-substituents at silicon atoms and the mixture of four stereoisomers of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane as the cores were synthesized. Their thermal and viscous properties were studied. All synthesized compounds were characterized by a complex of physicochemical analysis methods: nuclear magnetic resonance (NMR), FT-IR spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), viscometry in solution, rheometry, and Langmuir trough study.


Author(s):  
Rainhard Machatschek ◽  
Matthias Heuchel ◽  
Andreas Lendlein

AbstractAmong the high-performance and engineering polymers, polyimides and the closely related polyetherimide (PEI) stand out by their capability to react with nucleophiles under relatively mild conditions. By targeting the phthalimide groups in the chain backbone, post-functionalization offers a pathway to adjust surface properties such as hydrophilicity, solvent resistance, and porosity. Here, we use ultrathin PEI films on a Langmuir trough as a model system to investigate the surface functionalization with ethylene diamine and tetrakis(4-aminophenyl)porphyrin as multivalent nucleophiles. By means of AFM, Raman spectroscopy, and interfacial rheology, we show that hydrolysis enhances the chemical and mechanical stability of ultrathin films and allows for the formation of EDC/NHS-activated esters. Direct amidation of PEI was achieved in the presence of a Lewis acid catalyst, resulting in free amine groups rather than cross-linking. When comparing amidation with hydrolysis, we find a greater influence of the latter on material properties. Graphic abstract


2021 ◽  
Vol 582 ◽  
pp. 1085-1098
Author(s):  
Shalaka K. Kale ◽  
Andrew J. Cope ◽  
David M. Goggin ◽  
Joseph R. Samaniuk
Keyword(s):  

Soft Matter ◽  
2020 ◽  
Vol 16 (40) ◽  
pp. 9347-9356
Author(s):  
Rudi Mears ◽  
Iain Muntz ◽  
Job H. J. Thijssen

Presenting a theoretical framework to understand the surface pressure of liquid interfaces laden with microparticles, the effect of interparticle interactions on measured surface pressures, and the features of Langmuir-trough surface-pressure graphs.


ACS Omega ◽  
2019 ◽  
Vol 4 (12) ◽  
pp. 14920-14927
Author(s):  
Luis Real Hernandez ◽  
Rafael Jimenez-Flores

Author(s):  
Pattravee Niamprem ◽  
Thomas J. Milla ◽  
Burkhardt S. Schuett ◽  
S. P. Srinivas ◽  
Waree Tiyaboonchai

Objective: This study aimed to determine the possibility of nanostructured lipid carriers (NLCs) as a bionic tear film by determining the surface activities of the developed NLCs and their interaction with human meibomian lipid films. Methods: NLCs with different types of solid lipids and surfactants were prepared by a high-pressure homogenizer. The particle size was determined by dynamic light scattering. The surface activities of the NLCs and NLCs mixed with meibomian lipids were measured using a Langmuir trough and the resulting surface pressure area (Π-A) profiles were compared. These lipid films were further analyzed using fluorescence microscopy and scanning electron microscopy (SEM). Results: The particle size of prepared NLCs varied from 38–280 nm based on types of solid lipid and surfactant. All NLCs were highly surface active as indicated by their maximum surface pressure (Πmax). The Π-A profiles of meibum seeded with NLCs showed higher surface pressure than meibum alone and the shape of profiles were dominated by the meibomian lipids. These findings were in agreement with fluorescence and SEM micrographs, which revealed that the NLCs could adsorb and integrate to the meibomian lipid films as well as diffuse from the subphase to the lipid films. Conclusion: NLCs are surface active and can integrate with meibomian lipid films formed stable films. The type of interaction can be tailored by altering the solid lipids used in the formulation of the NLCs which could provide the means to develop efficient formulations for targeting dry eye disease related to a non-functional tear film lipid layer.


Sign in / Sign up

Export Citation Format

Share Document