cellular compartment
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 52)

H-INDEX

35
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Tatsuya Sato ◽  
Jason Solomon Shapiro ◽  
Hsiang-Chun Chang ◽  
Richard A Miller ◽  
Hossein Ardehali

Iron is an essential molecule for biological processes, but its accumulation can lead to oxidative stress and cellular death. Due to its oxidative effects, iron accumulation is implicated in the process of aging and neurodegenerative diseases. However, the mechanism for this increase in iron with aging, and whether this increase is localized to specific cellular compartment(s), are not known. Here, we measured the levels of iron in different tissues of aged mice, and demonstrated that while cytosolic non-heme iron is increased in the liver and muscle tissue, only the aged brain cortex exhibits an increase in both the cytosolic and mitochondrial non-heme iron. This increase in brain iron is associated with elevated levels of local hepcidin mRNA and protein in the brain. We also demonstrate that the increase in hepcidin is associated with increased ubiquitination and reduced levels of the only iron exporter, ferroportin-1 (FPN1). Overall, our studies provide a potential mechanism for iron accumulation in the brain through increased local expression of hepcidin, and subsequent iron accumulation due to decreased iron export. Additionally, our data support that aging is associated with mitochondrial and cytosolic iron accumulation only in the brain and not in other tissues.


Author(s):  
Marianna Decet ◽  
Patrik Verstreken

Autophagy is an evolutionary conserved catabolic pathway essential for the maintenance of cellular homeostasis. Defective proteins and organelles are engulfed by autophagosomal membranes which fuse with lysosomes for cargo degradation. In neurons, the orchestrated progression of autophagosome formation and maturation occurs in distinct subcellular compartments. For synapses, the distance from the soma and the oxidative stress generated during intense neuronal activity pose a challenge to maintain protein homeostasis. Autophagy constitutes a crucial mechanism for proper functioning of this unique and vulnerable cellular compartment. We are now beginning to understand how autophagy is regulated at pre-synaptic terminals and how this pathway, when imbalanced, impacts on synaptic function and -ultimately- neuronal survival. We review here the current state of the art of “synaptic autophagy”, with an emphasis on the biogenesis of autophagosomes at the pre-synaptic compartment. We provide an overview of the existing knowledge on the signals inducing autophagy at synapses, highlight the interplay between autophagy and neurotransmission, and provide perspectives for future research.


2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Kerry L. Hilligan ◽  
Sivaranjani Namasivayam ◽  
Chad S. Clancy ◽  
Danielle O’Mard ◽  
Sandra D. Oland ◽  
...  

In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer nonspecific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here, we demonstrate that intravenous, but not subcutaneous, inoculation of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 (SCV2) and results in reduced viral loads in non-transgenic animals infected with an α variant. The observed increase in host resistance was associated with reductions in SCV2-induced tissue pathology, inflammatory cell recruitment, and cytokine production that multivariate analysis revealed as only partially related to diminished viral load. We propose that this protection stems from BCG-induced alterations in the composition and function of the pulmonary cellular compartment that impact the innate response to the virus and ensuing immunopathology. While intravenous BCG vaccination is not a clinically acceptable practice, our findings provide an experimental model for identifying mechanisms by which nonspecific stimulation of the pulmonary immune response promotes host resistance to SCV2 lethality.


Author(s):  
Xiaomin Dai ◽  
Yangmengjie Li ◽  
Weizhen Liu ◽  
Xiuqi Pan ◽  
Chenyue Guo ◽  
...  

Abstract RNA localization is involved in multiple biological processes. Recent advances in subcellular fractionation-based sequencing approaches uncovered localization pattern on a global scale. Most of existing methods adopt relative localization ratios (such as ratios of separately normalized transcripts per millions of different subcellular fractions without considering the difference in total RNA abundances in different fractions), however, absolute ratios may yield different results on the preference to different cellular compartment. Experimentally, adding external Spike-in RNAs to different fractionation can be used to obtain absolute ratios. In addition, a spike-in independent computational approach based on multiple linear regression model can also be used. However, currently, no custom tool is available. To solve this problem, we developed a method called subcellular fraction abundance estimator to correctly estimate relative RNA abundances of different subcellular fractionations. The ratios estimated by our method were consistent with existing reports. By applying the estimated ratios for different fractions, we explored the RNA localization pattern in cell lines and also predicted RBP motifs that were associated with different localization patterns. In addition, we showed that different isoforms of same genes could exhibit distinct localization patterns. To conclude, we believed our tool will facilitate future subcellular fractionation-related sequencing study to explore the function of RNA localization in various biological problems.


2021 ◽  
Author(s):  
Yusuke T. Maeda

Abstract Gene expression via transcription-translation is the most fundamental reaction to sustain biological systems, and complex reactions such as this one occur in a small compartment of living cells. Transcriptional feedback that controls gene expression during mRNA synthesis is a vital mechanism that regulates protein synthesis in cells. There is increasing evidence that the cellular compartment induces steric effects in gene expression reactions. However, the finite-size effect of spatial constraints on feedback regulation is not well understood. Here, we study the confinement effect on transcriptional negative feedback regulation of gene expression reactions using a theoretical model. We find that negative feedback regulation alters the scaling relation of gene expression level on compartment volume, approaching the regular scaling relation without the steric effect. Our findings suggest that negative autoregulatory feedback at the transcription step can dampen the size-dependence of protein expression levels in heterogeneous cell populations.


2021 ◽  
Author(s):  
Monika Jozsa ◽  
Tihol Ivanov Donchev ◽  
Rodolphe Sepulchre ◽  
Timothy O’Leary

Many kinds of cellular compartments comprise decision making mechanisms that control growth and shrinkage of the compartment in response to external signals. Key examples include synaptic plasticity mechanisms that regulate the size and strength of synapses in the nervous system. However, when synaptic compartments and postsynaptic densities are small such mechanisms operate in a regime where chemical reactions are discrete and stochastic due to low copy numbers of the species involved. In this regime, fluctuations are large relative to mean concentrations, and inherent discreteness leads to breakdown of mass action kinetics. Understanding how synapses and other small compartments achieve reliable switching in the low copy number limit thus remains a key open problem. We propose a novel self regulating signaling motif that exploits the breakdown of mass action kinetics to generate a reliable size-regulated switch. We demonstrate this in simple two and three-species chemical reaction systems and uncover a key role for inhibitory loops among species in generating switching behavior. This provides an elementary motif that could allow size dependent regulation in more complex reaction pathways and may explain discrepant experimental results on well-studied biochemical pathways.


Author(s):  
Marc Herb ◽  
Alexander Gluschko ◽  
Michael Schramm

Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.


2021 ◽  
Author(s):  
Hossein Ardehali ◽  
Tatsuya Sato ◽  
Jason Solomon Shapiro ◽  
Hsiang-Chun Chang ◽  
Richard A Miller

Iron is an essential molecule for biological processes, but its accumulation can lead to oxidative stress and cellular death. Due to its oxidative effects, iron accumulation is implicated in the process of aging and neurodegenerative diseases. However, the mechanism for this increase in iron with aging, and whether this increase is localized to specific cellular compartment(s), are not known. Here, we measured the levels of iron in different tissues of aged mice, and demonstrate that while cytosolic non-heme iron is increased in the liver and muscle tissue, only the aged brain exhibits an increase in both the cytosolic and mitochondrial non-heme iron. This increase in brain iron is associated with elevated levels of local hepcidin mRNA and protein in the brain. We also demonstrate that the increase in hepcidin is associated with increased ubiquitination and reduced levels of the only iron exporter, feroportin-1 (FPN1). Overall, our studies provide a potential mechanism for iron accumulation in the brain through increased local expression of hepcidin, and subsequent iron accumulation due to decreased iron export. Additionally, our data support that aging is associated with mitochondrial and cytosolic iron accumulation only in the brain and not in other tissues.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0003682021
Author(s):  
Rachel M B Bell ◽  
Laura Denby

Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Though this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promises to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying aetiology to further reveal the patterning of immune cells and non-immune renal cells. This review summarises the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies and published findings using scRNA-seq in the context of myeloid cells and the kidney.


2021 ◽  
Author(s):  
Kerry L. Hilligan ◽  
Sivaranjani Namasivayam ◽  
Chad S. Clancy ◽  
Danielle O’Mard ◽  
Sandra D. Oland ◽  
...  

AbstractEarly events in the host response to SARS-CoV-2 are thought to play a major role in determining disease severity. During pulmonary infection, the virus encounters both myeloid and epithelioid lineage cells that can either support or restrict pathogen replication as well as respond with host protective versus detrimental mediators. In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer non-specific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here we demonstrate that prior intravenous, but not subcutaneous, administration of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 and results in reduced viral loads in non-transgenic animals infected with an alpha variant. The observed increase in host resistance was associated with reductions in SARS-CoV-2-induced tissue pathology, inflammatory cell recruitment and cytokine production that multivariate analysis revealed to be only partially related to diminished viral load. We propose that this protection stems from BCG-induced alterations in the composition and function of the pulmonary cellular compartment that impact the innate response to the virus and the ensuing immunopathology.


Sign in / Sign up

Export Citation Format

Share Document