internal standards
Recently Published Documents


TOTAL DOCUMENTS

906
(FIVE YEARS 183)

H-INDEX

58
(FIVE YEARS 6)

2021 ◽  
Vol 10 (24) ◽  
pp. 5813
Author(s):  
Anna Welz ◽  
Marcin Koba ◽  
Piotr Kośliński ◽  
Joanna Siódmiak

Piperazine derivatives belong to the popular psychostimulating compounds from the group of designer drugs. They are an alternative to illegal drugs such as ecstasy and amphetamines. They are being searched by consumers for recreational use due to their stimulating and hallucinogenic effects. Many NPS-related poisonings and deaths have been reported where piperazines have been found. However, a major problem is the potential lack of laboratory confirmation of the involvement of piperazine derivatives in the occurrence of poisoning. Although many methods have been published, piperazine derivatives are not always included in a routine analytical approach or targeted toxicological analysis. There is an increasing need to provide qualitative evidence for the presence of piperazine derivatives and to ensure reproducible quantification. This article describes a new rapid method of detecting piperazine derivatives in biological material, using LC-MS. All target analytes were separated in a 15 min run time and identified based on the precursor ion, at least two product ions, and the retention time. Stable isotopically labeled (SIL) internal standards: BZP-D7, mCPP-D8 and TFMPP-D4 were used for analysis, obtaining the highest level of confidence in the results. The proposed detection method provides the analytical confirmation of poisoning with piperazine designer drugs.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Zehra Hajrulai-Musliu ◽  
Risto Uzunov ◽  
Stefan Jovanov ◽  
Dean Jankuloski ◽  
Velimir Stojkovski ◽  
...  

AbstractA multi-class and multi-residue/contaminant method for the determination of veterinary drug and pesticide residues and mycotoxins in bovine meat has been developed and validated. The veterinary drug residues/contaminants included antimicrobials, anabolic hormones, lactones, β-agonists, mycotoxins, and pesticides. Isotopic labeled internal standards were included to compensate residual matrix effects. The calibrators used in the method demonstrated linearity with the R2 > 0.98. The decision limit (CCα) values were in the range from 0.067 to 2103.84 μg/kg, while the range for detection capability (CCβ) was from 0.083 to 2482.13 μg/kg. The limit of detection (LOD) and limit of quantification (LOQ) were in the range from 0.059 to 291.36 μg/kg, and 0.081 to 328.13 μg/kg, respectively. The recovery of analytes ranged from 61.28% to 116.20%. The intra-day coefficient of variation (CV) was from 0.97 to 25.93% and the inter-day CV was 2.30–34.04%. The method has been used for the determination of 49 residues/contaminants in bovine meat. Application of the method in routine analysis in bovine samples, revealed in limited samples the presences of enrofloxacin, oxytetracycline and sulfadiazine at the concentration of 35.22 µg/kg, 27.35 µg/kg, and 36.20 µg/kg, respectively.


Author(s):  
Katharina Habler ◽  
Bernhard Koeppl ◽  
Franz Bracher ◽  
Michael Vogeser

Abstract Objectives Bile acids serve as biomarkers for liver function and are indicators for cholestatic and hepatobiliary diseases like hepatitis, cirrhosis, and intrahepatic cholestasis of pregnancy (ICP). Sulfation and renal excretion of bile acids are important elimination steps. The power of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) allows specific profiling of primary and secondary bile acids as well as their sulfated counterparts. Methods Twenty-four sulfated and non-sulfated primary and secondary bile acids were quantified in urine with 15 corresponding stable isotope labeled internal standards by using two-dimensional UHPLC-MS/MS. The sample preparation was based on a simple dilution with a methanolic zinc sulfate solution followed by an automated online solid phase extraction clean up. Results The validation results of the method fulfilled the criteria of the European Medicine Agency (EMA) “Guideline on bioanalytical method validation”. To verify fitness for purpose, 40 urine samples were analyzed which showed an average of 86% sulfation, 9.1% taurine-conjugation, 14% non-conjugation, and 77% glycine-conjugation rates. Conclusions Lossless one-pot sample preparation, automated sample purification, and high number of internal standards are major innovations of the presented profiling method, which may allow diagnostic application of BA profiling in the future.


Synthesis ◽  
2021 ◽  
Author(s):  
Michael Sebald ◽  
Julian Gebauer ◽  
Matthias Koch

Abstract Alternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuff like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis commonly used for the quantification of the natural products in food and feed.


2021 ◽  
Author(s):  
Mogjiborahman Salek ◽  
Jonas D Foerster ◽  
Wolf-Dieter Lehmann ◽  
Angelika B Riemer

In mass spectrometry-based proteomics, heavy internal standards are used to validate target peptide detections and to calibrate peptide quantification. Here we report light contamination present in heavy labelled synthetic peptides of high isotopic enrichment. Application of such peptides as assay-internal standards potentially compromises the detection and quantification especially of low abundant cellular peptides. Therefore, it is important to adopt guidelines to prevent false-positive identifications of endogenous light peptides as well as errors in their quantification from biological samples.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 770
Author(s):  
Didier Tardieu ◽  
Maria Matard-Mann ◽  
Pi Nyvall Collén ◽  
Philippe Guerre

Fumonisins (FB) are mycotoxins known to exert most of their toxicity by blocking ceramide synthase, resulting in disruption of sphingolipid metabolism. Although the effects of FB on sphinganine (Sa) and sphingosine (So) are well documented in poultry, little information is available on their other effects on sphingolipids. The objective of this study was to analyze the effects of FB on the hepatic and plasma sphingolipidome in chickens. The first concern of this analysis was to clarify the effects of FB on hepatic sphingolipid levels, whose variations can lead to numerous toxic manifestations. The second was to specify the possible use of an alteration of the sphingolipidome as a biomarker of exposure to FB, in addition to the measurement of the Sa:So ratio already widely used. For this purpose, we developed an UHPLC MS/MS method that enabled the determination of 82 SL, including 10 internal standards, in chicken liver and plasma. The validated method was used to measure the effects of FB administered to chickens at a dose close to 20 mg FB1 + FB2/kg feed for 9 days. Significant alterations of sphingoid bases, ceramides, dihydroceramides, glycosylceramides, sphingomyelins and dihydrosphingomyelins were observed in the liver. In addition, significant increases in plasma sphinganine 1-phosphate, sphingosine 1-phosphate and sphingomyelins were observed in plasma. Interestingly, partial least-squares discriminant analysis of 11 SL in plasma made it possible to discriminate exposed chickens from control chickens, whereas analysis of Sa and So alone revealed no difference. In conclusion, our results show that the effects of FB in chickens are complex, and that SL profiling enables the detection of exposure to FB when Sa and So fail.


2021 ◽  
Author(s):  
Jalel Neffati ◽  
Ioanna Petrounia ◽  
Rudy D. Moreira ◽  
Raj Chakrabarti

AbstractPCR amplification of GC-rich regions often leads to low yield and specificity. Addition of PCR-enhancing compounds is employed in order to overcome these obstacles. PCR-enhancing additives are low molecular polar organic compounds that are included as undisclosed co-solvents in commercial PCR buffers. In the interest of transparency and to permit further optimization by researchers of PCR compositions for challenging amplification problems, we studied eight PCR buffers by GC/MS to identify and quantify their co-solvents. Buffer specificity, both rich in water and salified substances, required a suitable sample preparation before injection into the GC/MS system. The aqueous phase of each buffer was replaced by an organic solvent to remove, by precipitation and filtration, salified substances which are detrimental to the GC/MS analysis. This approach has demonstrated the advantage of eliminating both water and salified substances without any loss of co-solvents. The sensitivity of the developed method was demonstrated as the main co-solvents were easily detected, identified and quantified. The methodology for identifying the co-solvents is mainly based on comparison of both library matching of acquired MS spectra with NIST library and experimental mass spectra obtained from authentic chemical standards. For the quantification of each co-solvent, deuterated Internal standards of similar structure to the cosolvents were used to correct the variable recovery caused by sample preparation, matrix effects, and ion source variability. The recovery ratio of the developed method was verified and found to be in the range 90-120 %. We then characterized the effects of specific organic co-solvents identified during PCR amplification -- using DNA melting, polymerase thermostability, polymerase activity and real-time PCR methods -- in order to elucidate their mechanism of action and to permit further optimization of their effects on amplification efficiency and specificity.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
James Johnson ◽  
Victoria M. Harman ◽  
Catarina Franco ◽  
Edward Emmott ◽  
Nichola Rockliffe ◽  
...  

Abstract Background QconCATs are quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. However, changing a QconCAT design, for example, to replace poorly performing peptide standards has been a protracted process. Results We report a new approach to the assembly and construction of QconCATs, based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short construct also allows a second cycle of loop assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. Conclusions We refer to this approach as the ALACAT strategy as it permits à la carte design of quantification standards. ALACAT methodology is a major gain in flexibility of QconCAT implementation as it supports rapid editing and improvement of QconCATs and permits, for example, substitution of one peptide by another.


Sign in / Sign up

Export Citation Format

Share Document