waste wood
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 105)

H-INDEX

26
(FIVE YEARS 6)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Ran Zhang ◽  
Haoxiang Wang ◽  
Jie Ji ◽  
Hainian Wang

The purpose of this study is to explore the viscoelastic properties, rutting resistance, and fatigue resistance of waste wood-based biochar-modified asphalt. The biochar with 2%, 4%, and 8% mixing amounts and two kinds of particle size, 75–150 μm and <75 μm, were used as modifiers of petroleum asphalt. Meanwhile, in the control group, a graphite modifier with a particle size of 0–75 μm and mixing amount of 4% was used for comparison. Aged asphalts were obtained in the laboratory by the Rolling Thin Film Oven (RTFO) test and the Pressure Aging Vessel (PAV) test. The viscoelastic properties, rutting resistance, and fatigue resistance of biochar-modified asphalt were evaluated by phase angle, critical high temperature, and fatigue cracking index by the Dynamic Shear Rheometer (DSR) test. In addition, the micromorphology of biochar and graphite was compared and observed by using the scanning electron microscope (SEM). The results show that increasing the mixing amount of biochar gave a higher elastic property and significantly better rutting resistance of the modified asphalt at high temperature. Compared with graphite, the biochar has a rougher surface and more pores, which provides its higher specific surface area. Therefore, it is easier to bond with asphalt to form a skeleton network structure, then forming a more stable biochar–asphalt base structure. In this way, compared to graphite-modified asphalt, biochar-modified asphalt showed better resistance to rutting at high temperature, especially for the asphalt modified with biochar of small particle size. The critical high temperature T(G*/sinδ) of 4% Gd, 4% WD, and 4% Wd was 0.31 °C, 1.57 °C, and 2.92 °C higher than that of petroleum bitumen. In addition, the biochar asphalt modified with biochar of small particle size had significantly better fatigue cracking resistance than the asphalt modified with biochar of large particle size. The fatigue cracking indexes for 2% Wd, 4% Wd, and 8% Wd were 29.20%, 7.21%, and 37.19% lower by average than those for 2% WD, 4% WD, and 8% WD at 13–37 °C. Therefore, the waste wood biochar could be used as the modifier for petroleum asphalt. After the overall consideration, the biochar-modified asphalt with 2%–4% mixing amount and particle size less than 75 μm was recommended.


Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Andrew Chapman

California plans to use forest thinning to reduce wildfire risk. New research suggests the state could also see a climate benefit by repurposing waste wood produced by thinning.


2022 ◽  
Vol 1048 ◽  
pp. 333-344
Author(s):  
K. Kumar Arun ◽  
M. Muthukannan ◽  
R. Raja Abinaya ◽  
A. Kumar Suresh

On the demand of reducing the global warming due to cement production which is used as main constituent in the production of concrete and minimizing the environmental impact caused by the waste and its disposal methods, this study was aimed. This study looked in to detail insight view on effective utilization of waste wood ash in the production of geopolymer concrete beams and columns to alternate the conventional reinforced concrete elements in construction industry. Waste wood ash is a waste by product produced in the nearby hotel and factories by burning the waste wood collected from timber industries and the ash are thrown in to land which creates a major environmental pollution. Geopolymer is a novel inorganic eco-friendly binding agent derived from alkaline solution that stimulates aluminosilicate source material (such as metakaolin, fly ash and GGBS). In this research, behaviour of beams in deflection, ductility factor, flexural strength and toughness index and columns in load carrying ability, stress strain behaviour and load-deflection behaviours were examined for three types of concretes (30% WWA – 70% Fly ash Geo-polymer concrete, Fly ash Geo-polymer concrete and Reinforced Cement Concrete). The results showed that inclusion of waste wood ash in geopolymer concrete helped in enhancing the load carrying capacity of beam and column by 42% and 28%. Further, the behaviour of structural elements in stiffness, ductility and toughness were also improved with the replacement of waste wood ash.


Author(s):  
Honggang Luo ◽  
Rongrong Si ◽  
Changwei Li ◽  
Junliu Zhang ◽  
Peng Li ◽  
...  

Porous biomass-based carbon materials with microtube arrays have been fabricated from larch waste wood by coupling green delignification and multistage carbonization. The microtube structure and pore size of the sample...


2021 ◽  
pp. 71-83
Author(s):  
Darma Santi ◽  
. Triyono ◽  
Wega Trisunaryanti ◽  
Iip Izul Falah ◽  
Jacson Victor Morin

2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Remigiusz Guminski ◽  
Iwona Skoczko

Activated carbon has many applications in the environment, cosmetology, medicine and industry. The surface of each activated carbon can be modified to obtain the desired adsorption properties. Chemical activation can greatly affect the adsorption efficiency, control activity and application of the activated carbon. The aim of the study was to modify the selected activated carbon by chemical and physical methods, while maintaining these parameters so that it could be used in medicine. Powdered activated carbons with higher mechanical strength, large specific surface area and large macro-, meso- and micropore volume were prepared using natural waste wood material. This was followed by the digestion process and the washing of activated carbon. The study results indicate a significant influence of the centrifugal washing of activated carbon on the changes in the ash content and methylene index in the final product.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Chih-Kuei Chen ◽  
Jia-Jia Chen ◽  
Nhat-Thien Nguyen ◽  
Thuy-Trang Le ◽  
Nguyen-Cong Nguyen ◽  
...  

AbstractArsenic is a carcinogenic substance, with many cases of poisoning related to arsenic pollution in groundwater. In Taiwan arsenic in groundwater caused the notorious Blackfoot disease. Methods for arsenic removal from water include precipitation, membrane processes, ion exchange, and adsorption, but these processing technologies suffer from high investment costs and complex operations. The traditional adsorption method cannot be used for arsenic removal due to its high operating costs, difficulties in recovery, and low adsorption capacity. To address these issues, this study designed an adsorption material based on biochar for arsenic removal with higher adsorption properties and easy recovery. Biochar sources are readily available from waste wood as a cheap and environmentally friendly material. The efficiency of As (III) removal is also promoted by FeCl3 and KMnO4. The objectives of this research are to obtain optimum operation conditions by assessing the effects of different iron and manganese contents, different doses, different pH and different initial concentration. The adsorption mechanism between As (III) and biochar was studied by adsorption isotherms and the kinetic model. X-ray diffraction, energy-dispersive X-ray spectroscopy and elemental analyzer analysis results show that modified biochar has major elements of Fe and Mn. There is greater magnetism, 40 emu g− 1, in the modified biochar. The maximum adsorption efficiency of 81% and 0.72 mg g− 1 capacity occurs when the ratio of Mn, Fe and C is 4:1:1. The adsorption capacity is high under higher pH with pristine biochar and 1FeC under lower pH with 1Fe2MnC. The reaction mechanism is divided into four pathways. The first pathway is the attachment of As (III) ions into the pore of biochar via physical adsorption. In the second pathway, biochar can connect with As (III) through hydrogen bonding from the function group -OH in the biochar and the As (III) itself. In the third pathway, they can contact each other by electron force when the biochar surface is filled with a positive charge. In the fourth pathway, the compounds of manganese have strong oxidizability to oxidize As (III) to As(V). The iron ions then act as a bridge connecting the biochar and the As (III), resulting in the formation of new complex compounds.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1220
Author(s):  
Wen-Tien Tsai

Carbon-negative policies for mitigating the emissions of greenhouse gas (GHG) from the energy sector are becoming more urgent and important. Therefore, the environmental policies and regulatory promotion for reusing waste wood as a carbon-negative resource in Taiwan were discussed in this work, which focused on mitigating the emissions of GHG from the energy industries and the manufacturing and construction industries. Considering the official GHG inventory report, the trend analysis of GHG emissions from the energy and the manufacturing and construction industries was addressed first. In addition, this study placed emphasis on the environmental policies and regulatory measures for the material and energy resources from waste wood according to the promulgation of the relevant acts. It was found that the total GHG emissions from the energy and the manufacturing and construction industries accounted for over 80% of net GHG emissions in 2018. In review of the resource recycling and circular economy, lignocellulose-based (or bamboo-based) char, ecological building material, and wood-to-biofuel pathways (e.g., solid recovered fuel) were discussed in this work because they have been promoted by the central competent authorities of the Council of Agriculture (COA), the Ministry of Interior (MOI), and the Environmental Protection Administration (EPA), respectively. In order to achieve the sustainable development goals (SDGs) in Taiwan, carbon-negative policies for reusing waste wood as material and energy resources will play an important role in the mitigation of GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document