educational buildings
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 107)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 7 ◽  
Author(s):  
R. S. McLeod ◽  
M. Mathew ◽  
D. Salman ◽  
C. L. P. Thomas

Young people spend extended periods of time in educational buildings, yet relatively little is known about the air quality in such spaces, or the long-term risks which contaminant exposure places on their health and development. Although standards exist in many countries in relation to indoor air quality in educational buildings, they are rarely subject to detailed post-occupancy evaluation. In this study a novel indoor air quality testing methodology is proposed and demonstrated in the context of assessing the post-occupancy performance of a recently refurbished architecture studio building at Loughborough University, United Kingdom. The approach used provides a monitoring process that was designed to evaluate air quality in accordance with United Kingdom national guidelines (Building Bulletin 101) and international (WELL Building) standards. Additional, scenario-based, testing was incorporated to isolate the presence and source of harmful volatile organic compounds, which were measured using diffusive sampling methods involving analysis by thermal desorption - gas chromatography - mass spectrometry techniques. The findings show that whilst the case-study building appears to perform well in respect to existing national and international standards, these guidelines only assess average CO2 concentrations and total volatile organic compound limits. The results indicate that existing standards, designed to protect the health and wellbeing of students, are likely to be masking potentially serious indoor air quality problems. The presence of numerous harmful VOCs found in this study indicates that an urgent revaluation of educational building procurement and air quality monitoring guidelines is needed.


2021 ◽  
pp. 9-19
Author(s):  
VALERII DESHKO ◽  
INNA BILOUS ◽  
IRYNA SUKHODUB ◽  
TETYANA BOIKO

Target. To analyze the features of energy consumption of the building of the educational building No. 17 of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" in the conditions of quarantine restrictions in the implementation of energy-saving heating schemes.Methodology. Dynamic energetic modeling of a university academic building created in the DesignBuilder software environment under normal and quarantine modes.Results. Recommendations for the implementation of energy-saving modes of heating the building of the academic building of the university during the period of distance learning when introducing quarantine restrictions in Ukraine.Scientific novelty. An integrated approach has been developed to an in-depth analysis of energy consumption under conditions of partial use of the premises of educational buildings during the quarantine period. It is substantiated that the use of premises with partial operation of the building requires additional unit costs for heating needs.Practical significance. Simulation dynamic modeling of the building's energy consumption for heating for various modes of operation and employment / use of premises of educational buildings during the quarantine period in Ukraine, the results of the study will allow to obtain a set of energy characteristics of the building as a whole and its individual rooms / zones for hourly changes in internal operating conditions and external climatic conditions. The use of the proposed scheme of operation of the heating system of the building of the educational building allows to reduce energy consumption during the heating period by 8,5% compared to energy consumption during normal operation, which is economically feasible in conditions of partial occupancy of the building during quarantine restrictions (during lockdown) and an unpredictable macroeconomic situation on the energy market, causing a trend towards an increase in prices for basic energy resources.


2021 ◽  
Vol 940 (1) ◽  
pp. 012044
Author(s):  
M R Nugraha ◽  
O C Dewi

Abstract Demands for building in urban areas have been increasing lately, especially educational buildings as support for the human development index. Unfortunately, only a few educational buildings can support green buildings as pilots and educational materials for their users. One of the initiators in becoming educational materials and examples of green buildings is the i-cell multipurpose educational building at the Universitas Indonesia. This study aims to find evidence of how reliable and sustainable planning of an educational building in Depok, Indonesia, can accommodate the needs of its users while being environmentally friendly for its surroundings. It observes the influences of vegetation in the surrounding building, one of which is by maximizing the function of vegetation around the building. The research methods include collecting data from the weather archive, vegetation literature, observing the subject, and analyzing the vegetation’s effect. This study shows that vegetation has an important role in generating a sound environment for humans and buildings, including healing and providing calmness. This study concludes that vegetation plays a role in generating a good environment by decreasing temperature, sound pollution, sun glare and providing shading areas for people. Those conditions lead to the sustainability of the environment surrounding the building.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 591
Author(s):  
Lin-Rui Jia ◽  
Jie Han ◽  
Xi Chen ◽  
Qing-Yun Li ◽  
Chi-Chung Lee ◽  
...  

Thermal comfort and indoor air quality (IAQ) of educational buildings can affect students’ academic performance and well-being and are closely related to ventilation energy consumption. Demands of the indoor environmental quality within the classroom generally vary with the education levels and result in ventilation energy consumption accounting for a considerable proportion of the total energy use in bulk educational buildings. Its huge energy-saving potential is attracting worldwide attention from scholars and governments. Therefore, appropriate operation strategies of ventilation systems should be adopted to effectively reduce energy consumption without sacrificing thermal comfort and IAQ. However, the absence of relevant standards and guidelines for designing a quality classroom environment considering the special features of educational buildings remains an important research question. This study conducts a comprehensive review to determine research gaps and identify future directions for the interaction between thermal comfort, IAQ and ventilation energy consumption for educational buildings. The review results show that: (1) The thermal comfort prediction model should consider the influences of genders, ages and socioeconomic backgrounds; (2) The mixed-mode ventilation coupling the natural and mechanical approaches is preferred given its advantage of lower energy consumption and improved thermal comfort, but its control strategies need further exploration; (3) Optimizing passive design parameters of buildings (e.g., window to wall ratios, window orientations and sun shading installations) can significantly reduce the ventilation demands while maintaining indoor thermal comfort; (4) More studies are required for investigating thermal comfort in educational buildings during the heating period; and (5) IAQ of university buildings clearly requires further studies, especially on bacterial and fungal aerosol pollutants, for a more comprehensive assessment of the built environment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Giulia Ulpiani ◽  
Negin Nazarian ◽  
Fuyu Zhang ◽  
Christopher J. Pettit

Maintaining indoor environmental (IEQ) quality is a key priority in educational buildings. However, most studies rely on outdoor measurements or evaluate limited spatial coverage and time periods that focus on standard occupancy and environmental conditions which makes it hard to establish causality and resilience limits. To address this, a fine-grained, low-cost, multi-parameter IOT sensor network was deployed to fully depict the spatial heterogeneity and temporal variability of environmental quality in an educational building in Sydney. The building was particularly selected as it represents a multi-use university facility that relies on passive ventilation strategies, and therefore suitable for establishing a living lab for integrating innovative IoT sensing technologies. IEQ analyses focused on 15 months of measurements, spanning standard occupancy of the building as well as the Black Summer bushfires in 2019, and the COVID-19 lockdown. The role of room characteristics, room use, season, weather extremes, and occupancy levels were disclosed via statistical analysis including mutual information analysis of linear and non-linear correlations and used to generate site-specific re-design guidelines. Overall, we found that 1) passive ventilation systems based on manual interventions are most likely associated with sub-optimum environmental quality and extreme variability linked to occupancy patterns, 2) normally closed environments tend to get very unhealthy under periods of extreme pollution and intermittent/protracted disuse, 3) the elevation and floor level in addition to room use were found to be significant conditional variables in determining heat and pollutants accumulation, presumably due to the synergy between local sources and vertical transport mechanisms. Most IEQ inefficiencies and health threats could be likely mitigated by implementing automated controls and smart logics to maintain adequate cross ventilation, prioritizing building airtightness improvement, and appropriate filtration techniques. This study supports the need for continuous and capillary monitoring of different occupied spaces in educational buildings to compensate for less perceivable threats, identify the room for improvement, and move towards healthy and future-proof learning environments.


2021 ◽  
pp. 103598
Author(s):  
Carmen Díaz-López ◽  
Antonio Serrano-Jiménez ◽  
Jesús Lizana ◽  
Elisa López García ◽  
Marta Molina-Huelva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document