competitive exclusion principle
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Alberto Scarampi

In the framework of resource-competition models, it has been argued that the number of species stably coexisting in an ecosystem cannot exceed the number of shared resources. However, plankton seems to be an exception of this so-called "competitive-exclusion principle". In planktic ecosystems, a large number of different species stably coexist in an environment with limited resources. This contradiction between theoretical expectations and empirical observations is often referred to as "The Paradox of the Plankton". This project aims to investigate biophysical models that can account for the large biodiversity observed in real ecosystems in order to resolve this paradox. A model is proposed that combines classical resource competition models, metabolic trade-offs and stochastic ecosystem assembly. Simulations of the model match empirical observations, while relaxing some unrealistic assumptions from previous models.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rodrigo Caetano ◽  
Yaroslav Ispolatov ◽  
Michael Doebeli

Understanding the origin and maintenance of biodiversity is a fundamental problem. Many theoretical approaches have been investigating ecological interactions, such as competition, as potential drivers of diversification. Classical consumer-resource models predict that the number of coexisting species should not exceed the number of distinct resources, a phenomenon known as the competitive exclusion principle. It has recently been argued that including physiological tradeoffs in consumer-resource models can lead to violations of this principle and to ecological coexistence of very high numbers of species. Here we show that these results crucially depend on the functional form of the tradeoff. We investigate the evolutionary dynamics of resource use constrained by tradeoffs and show that if the tradeoffs are non-linear, the system either does not diversify, or diversifies into a number of coexisting species that does not exceed the number of resources. In particular, very high diversity can only be observed for linear tradeoffs.


2020 ◽  
Author(s):  
R. A. Caetano ◽  
Y. Ispolatov ◽  
M. Doebeli

Understanding the origin and maintenance of biodiversity is a fundamental problem. Many theoretical approaches have been investigating ecological interactions, such as competition, as potential drivers of diversification. Classical consumer-resource models predict that the number of coexisting species should not exceed the number of distinct resources, a phenomenon known as the competitive exclusion principle. It has recently been argued that including physiological tradeoffs in consumer-resource models can lead to violations of this principle and to ecological coexistence of very high numbers of species. Here we show that these results crucially depend on the functional form of the tradeoff. We investigate the evolutionary dynamics of resource use constrained by tradeoffs and show that if the tradeoffs are non-linear, the system either does not diversify, or diversifies into a number of coexisting species that does not exceed the number of resources. In particular, very high diversity can only be observed for linear tradeoffs.


2020 ◽  
Vol 7 (9) ◽  
pp. 201118
Author(s):  
Rasmus Skytte Eriksen ◽  
Sandeep Krishna

Bacterial communities are often highly diverse with several closely related species (or strains) coexisting together. These bacteria compete for resources and the competitive exclusion principle predicts that all but the fastest-growing bacteria will go extinct. When exposed to phage, it is predicted that bacterial strains with restriction–modification (RM) systems can circumvent the competitive exclusion principle and reach diversity of the order of the phage burst size. We show that with a trade-off between bacterial growth rates and the strength of their RM systems, the diversity of such an ecosystem can further increase several fold beyond the burst size limit. Moreover, we find that the ratio of the growth rate of a bacterial strain to the imperfection of its RM system is an excellent predictor of (i) whether the strain will go extinct or not, and (ii) the biomass of the strain if it survives. In contrast, the growth rate alone is not a determinant of either of these properties. Our work provides a quantitative example of a model ecosystem where the fitness of a species is determined not by growth rate, but by a trade-off between growth and defence against predators.


2020 ◽  
Author(s):  
Lev V. Kalmykov ◽  
Vyacheslav L. Kalmykov

AbstractBackgroundThe long-standing contradiction between formulations of the competitive exclusion principle and natural diversity of trophically similar species is known as the biodiversity paradox. Earlier we found that coexistence of complete competitors is possible despite 100% difference in competitiveness, but only under certain conditions – at their moderate propagation and at the particular initial location of individuals. Here we verify a hypothesis that completely competing species with aggressive propagation may coexist with less than 100% difference in competitiveness regardless of random initial location of competing individuals in ecosystem.MethodsWe investigate a role of competitiveness differences in coexistence of two completely competing species by individual-based modeling based on a transparent artificial intelligence. We propose and investigate an individual-based model of ecosystem dynamics supplemented by a probabilistic determination of the competitiveness of competing individuals without cooperative effects and with cooperative effects based on the numerical superiority of individuals of the species.ResultsWe have found that two aggressively propagating complete competitors can stably coexist, despite one species has some advantage in competitiveness over the other and all other characteristics of the species are equal. The found competitive coexistence occurred regardless of the initial random location of individuals in the ecosystem. When colonization of a free habitat started from a single individual of each species, then the complete competitors coexisted up to 31% of their difference in competitiveness. And when on initial stage half of the territory was probabilistically occupied, the complete competitors coexisted up to 22% of their difference in competitiveness. In the experiments with cooperative dependence on the numerical superiority of individuals of the species complete competitors stably co-existed despite 10% difference in basic competitiveness.DiscussionThe results additionally support our earlier reformulation of the competitive exclusion principle. Besides that, we revealed classical cases of competitive exclusion and “neutrality”. Our approach unifies models of competitive exclusion (“niche”), neutrality and coexistence of complete competitors in one theory. Our individual-based modeling of a complex system based on a transparent artificial intelligence opens up great prospects for a variety of theoretical and applied fields.


Author(s):  
Rasmus Skytte Eriksen ◽  
Sandeep Krishna

AbstractBacterial communities are often highly diverse with several closely related species (or strains) coexisting together. These bacteria compete for resources and the competitive exclusion principle predicts that all but the fastest-growing bacteria will go extinct. When exposed to phage, it is predicted that bacterial strains with restriction-modification (RM) systems can circumvent the competitive exclusion principle and reach diversity on the order of the phage burst size. We show that with a trade-off between bacterial growth rates and the strength of their RM systems, the diversity of such an ecosystem can further increase several fold beyond the burst size limit. Moreover, we find that the ratio of the growth rate of a bacterial strain to the imperfection of its RM system is an excellent predictor of (i) whether the strain will go extinct or not, and (ii) the biomass of the strain if it survives. In contrast, the growth rate alone is not a determinant of either of these properties. Our work provides a quantitative example of a model ecosystem where the fitness of a species is determined not by growth rate, but by a trade-off between growth and defence against predators.


2020 ◽  
Author(s):  
Itay Dalmedigos ◽  
Guy Bunin

We show how highly-diverse ecological communities may display persistent abundance fluctuations, when interacting through resource competition and subjected to migration from a species pool. This turns out to be closely related to the ratio of realized species diversity to the number of resources. This ratio is set by competition, through the balance between species being pushed out and invading. When this ratio is smaller than one, dynamics will reach stable equilibria. When this ratio is larger than one, fixed-points are either unstable or marginally stable, as expected by the competitive exclusion principle. If they are unstable, the system is repelled from fixed points, and abundances forever fluctuate. While marginally-stable fixed points are in principle allowed and predicted by some models, they become structurally unstable at high diversity. This means that even small changes to the model, such as non-linearities in how resources combine to generate species’ growth, will result in persistent abundance fluctuations.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327482095177
Author(s):  
Burt P. Kotler ◽  
Joel S. Brown

Here we advocate Cancer Community Ecology as a valuable focus of study in Cancer Biology. We hypothesize that the heterogeneity and characteristics of cancer cells within tumors should vary systematically in space and time and that cancer cells form local ecological communities within tumors. These communities possess limited numbers of species determined by local conditions, with each species in a community possessing predictable traits that enable them to cope with their particular environment and coexist with each other. We start with a discussion of concepts and assumptions that ecologists use to study closely related species. We then discuss the competitive exclusion principle as a means for knowing when two species should not coexist, and as an opening towards understanding how they can. We present the five major categories of mechanisms of coexistence that operate in nature and suggest that the same mechanisms apply towards understanding the diversification and coexistence of cancer cell species. They are: Food-Safety Tradeoffs, Diet Choice, Habitat Selection, Variance Partitioning, and Competition-Colonization Tradeoffs. For each mechanism, we discuss how it works in nature, how it might work in cancers, and its implications for therapy.


2019 ◽  
Author(s):  
Wenping Cui ◽  
Robert Marsland ◽  
Pankaj Mehta

The competitive exclusion principle asserts that coexisting species must occupy distinct ecological niches (i.e. the number of surviving species can not exceed the number of resources). An open question is to understand if and how different resource dynamics affect this bound. Here, we analyze a generalized consumer resource model with externally supplied resources and show that – in contrast to self-renewing resources – species can occupy only half of all available environmental niches. This motivates us to construct a new schema for classifying ecosystems based on species packing properties.


Sign in / Sign up

Export Citation Format

Share Document