glass slides
Recently Published Documents


TOTAL DOCUMENTS

790
(FIVE YEARS 175)

H-INDEX

44
(FIVE YEARS 6)

Author(s):  
Christipher T Gemmell ◽  
Valeria Parreira ◽  
Jeffrey M Farber

The aim of the present study was to investigate the ability of natural plant-derivate (flavonoid compounds) products to reduce and/or inhibit the biofilm-forming ability of Listeria monocytogenes. A collection of 500 synthetic and natural flavonoids were tested on strains of L. monocytogenes for their antimicrobial and anti-biofilm activity. L. monocytogenes biofilm inhibition by flavonoid compounds was tested on i) stainless steel coupons using crystal violet staining and ii) glass slides using confocal laser scanning microscopic (CLSM) imaging. The flavonoids were tested against a L. monocytogenes cocktail of 5 strains at a concentration of 100 µM to determine their effect on planktonic growth. A total of 17 flavonoids were chosen for further study due to their ability to significantly reduce the growth of L. monocytogenes in BHI broth, while 2 flavonoids were chosen because they actually increased growth. A lower concentration of flavonoid compounds (50 µM) was selected to investigate their effects on L. monocytogenes biofilm formation using i) stainless steel coupons to quantify biomass and ii) glass coupons to observe the biofilm architecture. The 19 flavonoids showed various levels of L.   monocytogenes growth inhibition, ranging from 2% to 100%, as compared to the respective positive and negative controls on stainless steel, after 48 h of incubation at 22 o C. In addition, in comparison to the control, most of the 19 flavonoids significantly (p ≤ 0.05) inhibited biofilm formation, with at least one of the L. monocytogenes strains or at one of the tested temperatures. In fact, when grown in BHI broth with 50 µM of the 19 selected flavonoid compounds for 48 h at 22 o C, there were visible reductions in L. monocytogenes biofilm formation on the glass coupons. Overall, we found multiple flavonoid compounds to be promising anti-biofilm and antimicrobial agents against L. monocytogenes .


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 232
Author(s):  
Vilma Ratautaite ◽  
Raimonda Boguzaite ◽  
Migle Beatrice Mickeviciute ◽  
Lina Mikoliunaite ◽  
Urte Samukaite-Bubniene ◽  
...  

Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer. AFM and SEM have been used for the analysis of the surface dominant features of the Ppy-PMB layers. From these images, it was concluded that the saccharides used in this study have a moderate effect on the surface morphology. Electrochromic properties were analyzed with respect to the changes of absorbance of the layer at two wavelengths (668 nm and 750 nm) by changing the pH of the surrounding solution and the potential between +0.8 V and −0.8 V. It was demonstrated that the highest absorbance changes are characteristic for all layers in the acidic media. Meanwhile, the absorbance changes of the layers were decreased in the more alkaline media. It was determined that the Ppy-PMB layers with heparin as a dopant were more mechanically stable in comparison to the layers doped with lactose and sucrose. Therefore, the Ppy-PMB layer doped with heparin was selected for the further experiment and it was applied in the design of electrochromic sensors for the determination of three xanthine derivatives: caffeine, theobromine, and theophylline. A linear relationship of ΔA (∆A = A+0.8V – A−0.8V) vs. concentration was determined for all three xanthine derivatives studied. The largest change in optical absorption was observed in the case of theophylline determination.


2021 ◽  
Author(s):  
Nehal M. Atallah ◽  
Michael S. Toss ◽  
Clare Verrill ◽  
Manuel Salto-Tellez ◽  
David Snead ◽  
...  

AbstractUsing digitalized whole slide images (WSI) in routine histopathology practice is a revolutionary technology. This study aims to assess the clinical impacts of WSI quality and representation of the corresponding glass slides. 40,160 breast WSIs were examined and compared with their corresponding glass slides. The presence, frequency, location, tissue type, and the clinical impacts of missing tissue were assessed. Scanning time, type of the specimens, time to WSIs implementation, and quality control (QC) measures were also considered. The frequency of missing tissue ranged from 2% to 19%. The area size of the missed tissue ranged from 1–70%. In most cases (>75%), the missing tissue area size was <10% and peripherally located. In all cases the missed tissue was fat with or without small entrapped normal breast parenchyma. No missing tissue was identified in WSIs of the core biopsy specimens. QC measures improved images quality and reduced WSI failure rates by seven-fold. A negative linear correlation between the frequency of missing tissue and both the scanning time and the image file size was observed (p < 0.05). None of the WSI with missing tissues resulted in a change in the final diagnosis. Missing tissue on breast WSI is observed but with variable frequency and little diagnostic consequence. Balancing between WSI quality and scanning time/image file size should be considered and pathology laboratories should undertake their own assessments of risk and provide the relevant mitigations with the appropriate level of caution.


Surfaces ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 306-322
Author(s):  
Soumen Samanta ◽  
Diana Gaad ◽  
Eva Cabet ◽  
Alain Lilienbaum ◽  
Ajay Singh ◽  
...  

Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated diazonium cation precursor. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedure. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers.


Author(s):  
Sunil Rawal ◽  
Sabrina H. Buer ◽  
Wayne Hawkins ◽  
Jonathan Robby Sanders ◽  
Pedro E. Arce

Abstract The utilization of titanium dioxide (TiO2) photocatalysis for water and air purification is a frequently used method due to TiO2 having properties making it chemically inert, highly cost-effective, abundant, non-toxic, and environmentally-friendly. In an effort to increase the efficiency of the degradation process, an in-depth understanding of the effects of the structure and number of thin film coatings is needed. Transparent, anatase-form titanium dioxide thin films were prepared via the sol-gel method and deposited onto microscopic glass slides using a novel spraying technique, with coatings ranging from 1 to 10. Characterization of the TiO2 thin film coated slides was performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The contribution shows that the coating technique is efficient in covering important areas of the surface and that it is suitable for a multiple coating layers thin film. The SEM imagines show that the surface of the slides increase coverage as the number of layers increases. This is potentially suitable for a mechanized spraying approach to upscaling the production of thin films for advanced oxidation applications.


Author(s):  
Maqsood Ahmed ◽  
Matthew J. S. Owens ◽  
Enrique M. Toledo ◽  
Ernest Arenas ◽  
Mark Bradley ◽  
...  

The development of efficient cell culture strategies for the generation of dopaminergic neurons is an important goal for transplantation-based approaches to treat Parkinson’s disease. To identify extracellular matrix molecules that enhance differentiation and might be used in these cell cultures we have used micro-contact printed arrays on glass slides presenting 190 combinations of 19 extracellular matrix molecules selected on the basis of their expression during embryonic development of the ventral midbrain. Using long-term neuroepithelial stem cells (Lt-NES), this approach identified a number of matricellular proteins that enhanced differentiation, with the combination of Sparc, Sparc-like (Sparc-l1) and Nell2 increasing the number of tyrosine hydroxylase+ neurons derived from Lt-NES cells and, critically for further translation, human pluripotent stem cells.


2021 ◽  
Vol 9 (11) ◽  
pp. 1113-1130
Author(s):  
Ble Alexis Tardy Kouassi ◽  
◽  
Koffi Richard Nguessan ◽  
NGuessan Romeo Lozo ◽  
Niamien-Ebrottie Julie Estelle ◽  
...  

The aim of the present study was to contribute to knowledge of the freshwater epilithic diatoms flora of Cote dIvoire. Diatoms were sampled in February and July 2012 on glass slides previously immersed during a period of 30 days at ten stations.The species composition of new and rare taxa was compiled, accompanied by illustrations. Forty two taxa distributed among 16 genera, 8 families and 5 orders were recorded in the temporal survey.Based on species occurrence frequency, 32 rare, 2 occasional, and 8 common species were registered. According to geographic distribution, taxa recorded were mostly cosmopolitan (47.72%) and tropical (43.18%), while 9.09% were endemic.Taking into account their affinity towards pH, 3 classes of diatoms : acidophilic taxa (35.47%), indifferent taxa (59.52%) and alkaliphilic taxa (4.76%)were found in the Me River.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4100
Author(s):  
Yun-Je Choi ◽  
Ju-Hee Ko ◽  
Seung-Won Jin ◽  
Hyun-Soo An ◽  
Dam-Bi Kim ◽  
...  

We herein report transparent self-cleaning coatings based on polyimide-fluorinated silica sol (PIFSS) nanocomposite. Polyamic acid-silica sol (PASS) suspensions were synthesized by adding four different amounts of a silica sol suspension to each end-capped polyamic acid solution. The PASS suspensions were spin-coated on glass slides, thermally imidized and treated with triethoxy-1H,1H,2H,2H-perfluorodecylsilane (TEFDS) to prepare PIFSS coatings. The PIFSS coatings showed high resistance to separation from glass substrates and thermal stability. Furthermore, the PIFSS coatings on the glass substrate could be cleanly removed using polar aprotic solvents and repeated coating was possible. As the amount of silica sol particles in the PIFSS coating was increased, the hydrophobic contact angle increased. Among them, PIFSS-10 and PIFSS-15 coatings showed nearly superhydrophobic contact angles (144° and 148°, respectively) and good self-cleaning property. It was confirmed by SEM and AFM studies that their hydrophobic and self-cleaning properties are due to uniform particle distribution and relatively high surface roughness. PIFSS-10 coating showed a high transmittance value (88%) at 550 nm and good self-cleaning property, therefore suitable as a transparent self-cleaning coating. The advantages of the coating are that the fabrication process is simple, and the substrate is reusable. The PIFSS coating is expected to be applied in solar cell panels, windows, lenses and safety goggles.


2021 ◽  
Author(s):  
Sorour Shahbazi ◽  
John Goodpaster ◽  
Gregory Smith ◽  
Thomas Becker ◽  
Simon W. Lewis

We have recently demonstrated that coated exfoliated Egyptian blue powder is effective for detecting latent fingermarks on a range of highly-patterned non-porous and semi-porous surfaces. In this extension of that work, we present our studies into an alternative approach to prepare exfoliated Egyptian blue coated with cetrimonium bromide and Tween® 20 using a simpler technique. The quality of the latent fingermarks developed with these exfoliated powders and the commercial powder were compared in a comprehensive study. Depletion series of natural fingermarks from a wide range of donors (12 males and females) deposited on non-porous (glass slides) and semi-porous (Australian banknotes) surfaces were used in this study. Enhancement in the performance of the coated exfoliated particles compared to the commercial powder was observed, particularly in the case of aged fingermarks and polymer banknotes as challenging substrates.


Author(s):  
Soumen Samanta ◽  
Diana Gaad ◽  
Eva Cabet ◽  
Alain Lilienbaum ◽  
Ajay Singh ◽  
...  

Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated corresponding diazonium compound. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedures. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 &micro;m length and ~45 &micro;m thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDMA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. Beyond this work, diazonium coupling agents constitute the corner stone of next generation processes for building flexible platforms for cell adhesion and uses thereof.


Sign in / Sign up

Export Citation Format

Share Document