lie group theory
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2682
Author(s):  
Alessandro Tarsi ◽  
Simone Fiori

Helicopters are extraordinarily complex mechanisms. Such complexity makes it difficult to model, simulate and pilot a helicopter. The present paper proposes a mathematical model of a fantail helicopter type based on Lie-group theory. The present paper first recalls the Lagrange–d’Alembert–Pontryagin principle to describe the dynamics of a multi-part object, and subsequently applies such principle to describe the motion of a helicopter in space. A good part of the paper is devoted to the numerical simulation of the motion of a helicopter, which was obtained through a dedicated numerical method. Numerical simulation was based on a series of values for the many parameters involved in the mathematical model carefully inferred from the available technical literature.


2021 ◽  
Vol 102 (2) ◽  
pp. 142-153
Author(s):  
O. Yildirim ◽  
◽  
S. Caglak ◽  

In general, due to the nature of the Lie group theory, symmetry analysis is applied to single equations rather than boundary value problems. In this paper boundary value problems for the sine-Gordon equations under the group of Lie point symmetries are obtained in both differential and difference forms. The invariance conditions for the boundary value problems and their solutions are obtained. The invariant discretization of the difference problem corresponding to the boundary value problem for sine-Gordon equation is studied. In the differential case an unbounded domain is considered and in the difference case a lattice with points lying in the plane and stretching in all directions with no boundaries is considered.


Author(s):  
S. Merati ◽  
M. R. Farhangdoost

A hom-Lie group structure is a smooth group-like multiplication on a manifold, where the structure is twisted by a isomorphism. The notion of hom-Lie group was introduced by Jiang et al. as integration of hom-Lie algebra. In this paper we want to study hom-Lie group and hom-Lie algebra from the Lie group’s point of view. We show that some of important hom-Lie group issues are equal to similar types in Lie groups and then many of these issues can be studied by Lie group theory.


2021 ◽  
Vol 6 (11) ◽  
pp. 12148-12165
Author(s):  
Mobeen Munir ◽  
◽  
Muhammad Athar ◽  
Sakhi Sarwar ◽  
Wasfi Shatanawi ◽  
...  

<abstract><p>Lie symmetry analysis of differential equations proves to be a powerful tool to solve or atleast to reduce the order and non-linearity of the equation. The present article focuses on the solution of Generalized Equal Width wave (GEW) equation using Lie group theory. Over the years, different solution methods have been tried for GEW but Lie symmetry analysis has not been done yet. At first, we obtain the infinitesimal generators, commutation table and adjoint table of Generalized Equal Width wave (GEW) equation. After this, we find the one dimensional optimal system. Then we reduce GEW equation into non-linear ordinary differential equation (ODE) by using the Lie symmetry method. This transformed equation can take us to the solution of GEW equation by different methods. After this, we get the travelling wave solution of GEW equation by using the Sine-cosine method. We also give graphs of some solutions of this equation.</p></abstract>


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Xiaodong Jin ◽  
Yuefa Fang ◽  
Dan Zhang ◽  
Haiqiang Zhang

Abstract Dexterous hands are an important end-effector of robots, but their relatively low carrying capacity, small workspace and poor task adaptability are the key factors that restrict their wide application. To overcome these shortcomings of dexterous hands, a novel Lie-group-based synthesis method that extends the 3-[P][S] parallel mechanisms (PMs) to dexterous hands is presented, and a class of three-finger dexterous hands with parallel finger structure is obtained. The multimode operation is proposed by designing a double-slider palm that provides the hands with a large workspace and high task adaptability. The operation types are presented, and the dexterous in-hand manipulations in all modes are analyzed by means of Lie group theory. In addition, the equivalent structural characteristics of pinching objects are classified to elucidate the motion types and the rotational properties of the pinched objects. The inverse kinematics of fingers is presented and is used to identify the input–output relationships. Finally, the workspaces of the fingers are determined according to the result of the inverse kinematics, and the relationships between the size and displacements of the pinched object are presented. The proposed dexterous hands overcome the problems of low carrying capability, small workspace, and weak in-hand manipulation ability that are encountered with the traditional dexterous hands, which are underactuated and are built with a series finger structure, and can be potentially applied to various application domains, such as services, industry, and rescue.


Author(s):  
Torstein R. Storaas ◽  
Kasper Virkesdal ◽  
Gitle S. Brekke ◽  
Thorstein Rykkje ◽  
Thomas Impelluso

Abstract Norwegian industries are constantly assessing new technologies and methods for more efficient and safer maintenance in the aqua cultural, renewable energy, and oil and gas industries. These Norwegian offshore industries share a common challenge: to install new equipment and transport personnel in a safe and controllable way between ships, farms and platforms. This paper deploys the Moving Frame Method (MFM) to analyze ship stability moderated by a dual gyroscopic inertial device. The MFM describes the dynamics of the system using modern mathematics. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. This project extends previous work. It accounts for the dual effect of two inertial disk devices, it accounts for the prescribed spin of the disks. It separates out the prescribed variables. This work displays the results in 3D on cell phones. It represents a prelude to testing in a wave tank.


Author(s):  
Thorstein R. Rykkje ◽  
Tord Tørressen ◽  
Håvard Løkkebø

Abstract This project creates a model to assess the motion induced on a buoy at sea, under wave conditions. We use the Moving Frame Method (MFM) to conduct the analysis. The MFM draws upon concepts and mathematics from Lie group theory — SO(3) and SE(3) — and Cartan’s notion of Moving Frames. This, together with a compact notation from geometrical physics, makes it possible to extract the equations of motion, expeditiously. This work accounts for the masses and geometry of all components and for buoyancy forces and added mass. The resulting movement will be displayed on 3D web pages using WebGL. Finally, the theoretical results will be compared with experimental data obtained from a previous project done in the wave tank at HVL.


Author(s):  
Thorstein R. Rykkje ◽  
Eystein Gulbrandsen ◽  
Andreas Fosså Hettervik ◽  
Morten Kvalvik ◽  
Daniel Gangstad ◽  
...  

Abstract This paper extends research into flexible robotics through a collaborative, interdisciplinary senior design project. This paper deploys the Moving Frame Method (MFM) to analyze the motion of a relatively high multi-link system, driven by internal servo engines. The MFM describes the dynamics of the system and enables the construction of a general algorithm for the equations of motion. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. The result is a dynamic 3D analytical model for the motion of a snake-like robotic system, that can take the physical sizes of the system and return the dynamic behavior. Furthermore, this project builds a snake-like robot driven by internal servo engines. The multi-linked robot will have a servo in each joint, enabling a three-dimensional movement. Finally, a test is performed to compare if the theory and the measurable real-time results match.


Sign in / Sign up

Export Citation Format

Share Document