single cell transcriptome
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 375)

H-INDEX

38
(FIVE YEARS 16)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ju Liu ◽  
Xiaoyan Yang ◽  
Jiali Pan ◽  
Zhihua Wei ◽  
Peidong Liu ◽  
...  

Relapsing-remitting multiple sclerosis (RRMS) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) are inflammatory demyelinating diseases of the central nervous system (CNS). Due to the shared clinical manifestations, detection of disease-specific serum antibody of the two diseases is currently considered as the gold standard for the diagnosis; however, the serum antibody levels are unpredictable during different stages of the two diseases. Herein, peripheral blood single-cell transcriptome was used to unveil distinct immune cell signatures of the two diseases, with the aim to provide predictive discrimination. Single-cell RNA sequencing (scRNA-seq) was conducted on the peripheral blood from three subjects, i.e., one patient with RRMS, one patient with MOGAD, and one patient with healthy control. The results showed that the CD19+ CXCR4+ naive B cell subsets were significantly expanded in both RRMS and MOGAD, which was verified by flow cytometry. More importantly, RRMS single-cell transcriptomic was characterized by increased naive CD8+ T cells and cytotoxic memory-like Natural Killer (NK) cells, together with decreased inflammatory monocytes, whereas MOGAD exhibited increased inflammatory monocytes and cytotoxic CD8 effector T cells, coupled with decreased plasma cells and memory B cells. Collectively, our findings indicate that the two diseases exhibit distinct immune cell signatures, which allows for highly predictive discrimination of the two diseases and paves a novel avenue for diagnosis and therapy of neuroinflammatory diseases.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Bin Zhang ◽  
Yuan Zhang ◽  
Lei Xiong ◽  
Yuzhe Li ◽  
Yunliang Zhang ◽  
...  

Inflammatory monocytes are key mediators of acute and chronic inflammation; yet, their functional diversity remains obscure. Single-cell transcriptome analyses of human inflammatory monocytes from COVID-19 and rheumatoid arthritis patients revealed a subset of cells positive for CD127, an IL-7 receptor subunit, and such positivity rendered otherwise inert monocytes responsive to IL-7. Active IL-7 signaling engaged epigenetically coupled, STAT5-coordinated transcriptional programs to restrain inflammatory gene expression, resulting in inverse correlation between CD127 expression and inflammatory phenotypes in a seemingly homogeneous monocyte population. In COVID-19 and rheumatoid arthritis, CD127 marked a subset of monocytes/macrophages that retained hypoinflammatory phenotypes within the highly inflammatory tissue environments. Furthermore, generation of an integrated expression atlas revealed unified features of human inflammatory monocytes across different diseases and different tissues, exemplified by those of the CD127high subset. Overall, we phenotypically and molecularly characterized CD127-imprinted functional heterogeneity of human inflammatory monocytes with direct relevance for inflammatory diseases.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Peter Fabian ◽  
Kuo-Chang Tseng ◽  
Mathi Thiruppathy ◽  
Claire Arata ◽  
Hung-Jhen Chen ◽  
...  

AbstractThe cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.


2022 ◽  
Vol 23 (2) ◽  
pp. 613
Author(s):  
Masahito Yamagata

The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.


2022 ◽  
Author(s):  
Guangyu Liu ◽  
Jie Li ◽  
Jiming Li ◽  
Zhiyong Chen ◽  
Peisi Yuan ◽  
...  

De novo shoot regeneration from a callus plays a crucial role in both plant biotechnology and the fundamental research of plant cell totipotency. Recent studies have revealed many regulatory factors involved in this developmental process. However. our knowledge of the cell heterogeneity and cell fate transition during de novo shoot regeneration is still limited. Here, we performed time-series single-cell transcriptome experiments to reveal the cell heterogeneity and redifferentiation trajectories during the early stage of de novo shoot regeneration. Based on the single-cell transcriptome data of 35,669 cells at five-time points, we successfully determined seven major cell populations in this developmental process and reconstructed the redifferentiation trajectories. We found that all cell populations resembled root identities and undergone gradual cell-fate transitions. In detail, the totipotent callus cells differentiated into pluripotent QC-like cells and then gradually developed into less differentiated cells that have multiple root-like cell identities, such as pericycle-like cells. According to the reconstructed redifferentiation trajectories, we discovered that the canonical regeneration-related genes were dynamically expressed at certain stages of the redifferentiation process. Moreover, we also explored potential transcription factors and regulatory networks that might be involved in this process. The transcription factors detected at the initial stage, QC-like cells, and the end stage provided a valuable resource for future functional verifications. Overall, this dataset offers a unique glimpse into the early stages of de novo shoot regeneration, providing a foundation for a comprehensive analysis of the mechanism of de novo shoot regeneration.


2022 ◽  
Vol 15 (1) ◽  
pp. 101277
Author(s):  
Eun Young Kim ◽  
Yoon Jin Cha ◽  
Sang Hoon Lee ◽  
Sukin Jeong ◽  
Yong Jun Choi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liting Wu ◽  
Along Gao ◽  
Lan Li ◽  
Jianlin Chen ◽  
Jun Li ◽  
...  

Teleost fish anterior kidney (AK) is an important hematopoietic organ with multifarious immune cells, which have immune functions comparable to mammalian bone marrow. Myeloid and lymphoid cells locate in the AK, but the lack of useful specific gene markers and antibody-based reagents for the cell subsets makes the identification of the different cell types difficult. Single-cell transcriptome sequencing enables single-cell capture and individual library construction, making the study on the immune cell heterogeneity of teleost fish AK possible. In this study, we examined the transcriptional patterns of 11,388 AK leukocytes using 10× Genomics single-cell RNA sequencing (scRNA-seq). A total of 22 clusters corresponding to five distinct immune cell subsets were identified, which included B cells, T cells, granulocytes, macrophages, and dendritic cells (DCs). However, the subsets of myeloid cells (granulocytes, macrophages, and DCs) were not identified in more detail according to the known specific markers, even though significant differences existed among the clusters. Thereafter, we highlighted the B-cell subsets and identified them as pro/pre B cells, immature/mature B cells, activated B/plasmablasts, or plasma cells based on the different expressions of the transcription factors (TFs) and cytokines. Clustering of the differentially modulated genes by pseudo-temporal trajectory analysis of the B-cell subsets showed the distinct kinetics of the responses of TFs to cell conversion. Moreover, we classified the T cells and discovered that CD3+CD4−CD8−, CD3+CD4+CD8+, CD4+CD8−, and CD4−CD8+ T cells existed in AK, but neither CD4+CD8− nor CD4−CD8+ T cells can be further classified into subsets based on the known TFs and cytokines. Pseudotemporal analysis demonstrated that CD4+CD8− and CD4−CD8+ T cells belonged to different states with various TFs that might control their differentiation. The data obtained above provide a valuable and detailed resource for uncovering the leukocyte subsets in Nile tilapia AK, as well as more potential markers for identifying the myeloid and lymphoid cell types.


2021 ◽  
Author(s):  
Shunta Sakaguchi ◽  
Yasushi Okochi ◽  
Chiharu Tanegashima ◽  
Osamu Nishimura ◽  
Tadashi Uemura ◽  
...  

During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing both accurate spatial and lineage information is still lacking. Here, we report a new single-cell transcriptome atlas of Drosophila gastrulae, divided into 65 transcriptomically distinct clusters. We found that the expression profiles of plasma-membrane-related genes, but not those of transcription factor genes, represented each germ layer, supporting the nonequivalent contribution of each transcription factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstructed the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.


Sign in / Sign up

Export Citation Format

Share Document