foaming agent
Recently Published Documents





Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 531
Samar Beaino ◽  
Peter El Hage ◽  
Rodolphe Sonnier ◽  
Sylvain Seif ◽  
Roland El Hage

This study highlights the synthesis of a new thermal insulating geopolymer based on the alkaline activation of fly ashes. A porous geopolymer material can be prepared without the addition of a foaming agent, using high ratio solution/ashes (activating solutions used are water, sodium or potassium hydroxide). In order to increase the porosity of the material and to make it more ecological, rice husks are incorporated into the formulation. The geopolymer materials were prepared at room temperature and dried at moderate temperature (105 °C) by a simple procedure. The microstructural characteristics of these new porous geopolymers were assessed by optical microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Infrared spectroscopy (FTIR) was used to confirm the geopolymerisation. The effect of the ratio solution/ashes and the percentage of the rice husk addition on thermal and mechanical analysis was evaluated. An insulating material for a solution/ashes ratio of 0.9 and a rice husk content of 15% having a λ value of 0.087 W/(m·K), a porosity of 61.4% and an Rc value of 0.1 MPa was successfully prepared.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 557
Xiaoqiang Zhang ◽  
Yuanyuan Pan

In order to solve the problem of the spontaneous combustion of coal gangue, a coal gangue fire-extinguishing material of gel–foam was developed. The foaming agent was screened by the Waring blender method with varying foam amounts, and the superabsorbent foam stabilizer was synthesized by free radical polymerization. Moreover, the gel–foam was used in a spontaneous combustion of coal gangue mountain field practice. The results showed that when the mass fraction of sodium dodecyl sulfonate and coconut oil amide propyl betaine was 0.6% and 4:6, the foaming amount was as high as 1500 mL. When the mass ratio of chitosan to acrylic acid was 1:6, the neutralization degree was 80%, the cross-linking agent was 0.8%, and the initiator was 0.01%, the water absorption of the synthesized superabsorbent foam stabilizer reached 476 mL/g. The synthesized gel–foam was tested in a spontaneous combustion coal gangue hill in a certain area, and no reburning sign was found within one month.

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Jung Joon Park ◽  
Gi Joon Park ◽  
Moon Kyung Kim ◽  
Wooseok Yeo ◽  
Jin Chul Joo ◽  

A porous photocatalyst concrete filter (deNOx PCF) is successfully manufactured to reduce NOx by mixing TiO2 photocatalyst with lightweight aerated concrete. From the results, 4% infusion rate of each foaming agent provided the smallest change of the height, and the optimal quality of the air bubbles can be produced by using foaming agent B with 4% of infusion rate. When 3% of TiO2 photocatalyst was mixed, less irregular and relatively homogeneous pores were formed on the surface with white color due to the proper amount of photocatalyst applied. For 3% of photocatalyst mixed with deNOx PCF, 1.03 μmol/hr of NO was reduced equivalent to 10.99% of NO reduction, suggesting that the TiO2 photocatalyst dispersed in the continuous and well-developed pores inside the specimen successfully performed the removal of NO flowing through deNOx PCF using synergistic effects of adsorption and photodegradation reaction. Finally, the specimen of porous deNOx PCF for reducing NOx developed in this study can be applied to various construction sites and the air quality can be solved by reducing NOx contributing to the formation of fine particles.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 325
Shuo Shang ◽  
Haihong Fan ◽  
Yuxiang Li ◽  
Lin Li ◽  
Zhou Li

SiC was chosen as the foaming agent, and river bottom silt, waste oil sludge, paint bucket slag, and fly ash were used as raw materials, to prepare lightweight ceramsite without adding any chemical additives. The effects of SiC dosing and sintering temperature on various properties of the ceramsite were studied, and the pore-forming mechanism of the lightweight ceramsite was clarified by thermal analysis and X-ray diffraction analysis. The results showed that the single ceramsite compressive strength, water absorption, bulk density, and porosity of ceramsite sintered at 1180 °C with 1.0% SiC were 2.15 MPa, 2.02%, 490 kg/m3, and 23.85%, respectively. The major mineralogical compositions were quartz, fayalite, and kyanite, with small amounts of albite-low from 1140 to 1190 °C. Furthermore, the concentration of all tested heavy metals from ceramsite was lower than the maximum allowable concentration of the leaching solution specified in the Chinese national standard (GB 5085.3-2007), which reveals that this solid waste ceramsite will not cause secondary environmental pollution. The prepared ceramsite, exhibiting lower bulk density, high water absorption and porosity, and effective solidification of deleterious elements, can be used to prepare green lightweight aggregate concrete. Importantly, preparation of solid waste ceramsite is an effective way to dispose of hazardous wastes.

2021 ◽  
Fenghong Li ◽  
Zhe Wang ◽  
Pengzhen Li ◽  
Wei Da ◽  
Weisi Lv ◽  

Abstract High density polyethylene (HDPE) and polyvinyl alcohol (PVA) are blended with maleic anhydride grafted amorphous-alpha olefin copolymer as the compatibilizer. The effects of different raw material ratio and the content of compatibilizer and foaming agent on the mechanical properties of the material are studied. It is found that the increasing content of PVA added to HDPE has a negative effect on the properties of the composites. The compatibility and mechanical properties are improved after adding MAH-g-APAO and the most appropriate addition amount is 4%. Foaming agent can make the material lightweight but will decrease the mechanical properties of the material. The composites have a good effect on the removal of methylene blue (MB). Through the experiment, it is found that the initial concentration of MB and adsorption time will also influence the adsorption. The experiment to explore the influence of pH value and temperature of solution on the removal efficiency shows that alkaline environment and high temperature can promote the removal of MB. At 343.15 K, the adsorption capacity (qe) reaches 2.08 mg·g-1. Using the composites to remove dye has the advantages of environmental protection, simple operation and easy recycling. It has broad application prospects in the field of dye wastewater treatment.

2021 ◽  
pp. 76-89
V. A. Ogai ◽  
N. G. Musakaev ◽  
A. Yu. Yushkov ◽  
V. O. Dovbysh ◽  
M. A. Vasilev

The issue of operation water-cut and "self-kills" wells is one of major aspects in gas production. One of the methods of solving this problem is the introduction of foaming agent into the well. The effectiveness of these technologies requires a theoretical and experimental study of gas-liquid flow with surfactants. We have analyzed existing works and have found out that experimental research in this area was carried out at atmospheric pressure. At the same time, the pressure in the well varies with the length of the wellbore and can affect the properties of foaming agent. The article presents a description of a facility for the study of gas-liquid flows with foaming agents at different pressure values. A method of conducting experiments on the facility, simulating a section of the production tubing of a vertical gas well, has been developed. The relations allowing calculating the volume contents of the phases in the gas-liquid flow with surfactants are proposed.

2021 ◽  
Zuhair AlYousef ◽  
Ali Altaq ◽  
Muhammad Almajid ◽  
Lyla Almaskeen

Abstract Foams are used in many oil and gas applications including conformance control during EOR processes, fracturing, and acidizing operations. Foams are defined as dispersions of gas bubbles into a continuous liquid phase. Typically, foams are generated when an injection gas such as nitrogen, carbon dioxide, or flue gas is mixed with an injection fluid containing a foaming agent. This method, however, requires a gas source to be present for foams to be generated. The objective of this study is to evaluate a new alternative technique for foam generation using two salt solutions. Nitrogen gas is generated as a result of the reaction of the two salt solutions at specific conditions. This generated nitrogen gas is then used for foam generation in porous media. The foam generated using the two salt solutions is tested in a microfluidic device (rock-on-a-chip) to study the gas mobility reduction in porous media. A Foam rheometer apparatus is also used to measure foam apparent viscosity when the two salt solutions are mixed with a foaming agent. The results are compared with those obtained when nitrogen gas is injected into the system independently in the absence of the two salt solutions. Results reveal that the amount of added salts significantly impact the produced nitrogen volume. Additionally, the test conditions especially the temperature, significantly impacts the reaction rate. The rate of nitrogen gas generation is directly proportional to the temperature when tested at 25-80°C. In addition, experiments demonstrate that the foams generated using the two salt solutions reaction have almost identical characteristics as those produced when nitrogen gas is injected into the foam rheometer apparatus independently. Both methods generate the same foams with comparable foam apparent viscosity. In the microfluidic system, the foam obtained using the two salt solutions in the presence of a foaming agent shows excellent resistance to gas flow and subsequently exhibit large gas mobility reduction. This experimental study, for the first time, confirms the ability of the two salt solutions reaction to generate nitrogen gas spontaneously upon contact under certain conditions. The generated gas is used to generate foams in the presence of a foaming agent. This newly proposed technique of foam generation could significantly impact many oil and gas operations including conformance control during EOR processes, fracturing, and acid stimulation operations.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012051
V A Zhigarev ◽  
S O Zazulya ◽  
A V Minakov ◽  
A L Neverov

Abstract The paper deals with drilling fluid flow in a horizontal well during its drilling. As part of this work, rheological parameters of water-based drilling fluid with the addition of polymers and a foaming agent were used. Cuttings transport was studied at different degrees of foam aeration. Besides, the paper presents the study of the effects of drilling fluid flow, as well as the rotation of drill pipes on the cuttings transport.

Sign in / Sign up

Export Citation Format

Share Document