fin design
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 835
Author(s):  
Hafiz Muhammad Habib ◽  
Hafiz Muhammad Ali ◽  
Muhammad Usman

Condensers are an integral part of air conditioning systems. The thermal efficiency of condensers solely depends on the rate of heat transfer from the cooling medium. Fin tubes are extensively used for heat transfer applications due to their enhanced heat transfer capabilities. Fins provide appreciable drainage because surface tension produces pressure gradients. Much research, contributed by several scientists, has focused on adjusting parameters, such as fin design, flow rates and retention angles. In this study, a setup with an observing hole was used to inspect the influence on retention angle of adjusting the flow rates of the fluid. The increase in retention angle was examined using several velocities and concentration mixtures. Pin-fin tubes were used to obtain coherent results using a photographic method. The experimental setup was designed to monitor the movement of fluid through the apparatus. The velocity was varied using dampers and visibility was enhanced using dyes. Photographs were taken at 20 m/s velocities after every 20 s. and 0.1% concentration and the flooding point observed. The experimental results were verified by standard observation which showed little variation at lower velocity. For water/water-propanol mixtures, a vapor velocity of 12 m/s and concentration ratio of 0.04% was the optimal combination to achieve useful improvement in retention angle. With increase of propanol from 0% to 0.04%, the increase in retention angle was greater compared to 0.04% to 0.1%. For velocities ranging from 0 to 12 m/s, the increase in retention angle was significant. A sharp change was observed for concentration ratios ranging from 0.01% to 0.05% compared to 0.05% to 0.1%.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 400
Author(s):  
Miftah Altwieb ◽  
Rakesh Mishra ◽  
Aliyu M. Aliyu ◽  
Krzysztof J. Kubiak

Multi-tube multi-fin heat exchangers are extensively used in various industries. In the current work, detailed experimental investigations were carried out to establish the flow/heat transfer characteristics in three distinct heat exchanger geometries. A novel perforated plain fin design was developed, and its performance was evaluated against standard plain and louvred fins designs. Experimental setups were designed, and the tests were carefully carried out which enabled quantification of the heat transfer and pressure drop characteristics. In the experiments the average velocity of air was varied in the range of 0.7 m/s to 4 m/s corresponding to Reynolds numbers of 600 to 2650. The water side flow rates in the tubes were kept at 0.12, 0.18, 0.24, 0.3, and 0.36 m3/h corresponding to Reynolds numbers between 6000 and 30,000. It was found that the louvred fins produced the highest heat transfer rate due to the availability of higher surface area, but it also produced the highest pressure drops. Conversely, while the new perforated design produced a slightly higher pressure drop than the plain fin design, it gave a higher value of heat transfer rate than the plain fin especially at the lower liquid flow rates. Specifically, the louvred fin gave consistently high pressure drops, up to 3 to 4 times more than the plain and perforated models at 4 m/s air flow, however, the heat transfer enhancement was only about 11% and 13% over the perforated and plain fin models, respectively. The mean heat transfer rate and pressure drops were used to calculate the Colburn and Fanning friction factors. Two novel semiempirical relationships were derived for the heat exchanger’s Fanning and Colburn factors as functions of the non-dimensional fin surface area and the Reynolds number. It was demonstrated that the Colburn and Fanning factors were predicted by the new correlations to within ±15% of the experiments.


2021 ◽  
Vol 43 ◽  
pp. 103181
Author(s):  
Lehar Asip Khan ◽  
Muhammad Mahabat Khan ◽  
Hassan Farooq Ahmed ◽  
Muhammad Irfan ◽  
Dermot Brabazon ◽  
...  

Author(s):  
Sebastian Unger ◽  
Matthias Beyer ◽  
Heiko Pietruske ◽  
Lutz Szalinski ◽  
Uwe Hampel

AbstractWe studied the heat transfer of finned heat exchanger configurations with a novel design. These novel fin designs use integrated pins to enhance the heat conduction from the fin base to the fin tip as well as the air-side heat transfer on the fin surface. Oval tubes with conventional circular plain fins (CPF) as well as novel circular integrated pin fins (CIPF) and serrated integrated pin fins (SIPF) were additively generated by a Selective Laser Melting (SLM) process and installed at the bottom of a 6.5 m long chimney. All heat exchanger designs were tested in a 2-row and 3-row configuration with Rayleigh numbers between 25,000 and 120,000. We found the average Nusselt number of SIPF to be higher and the Nusselt number of the CIPF to be lower than for the CPF. Moreover, the 2-row configuration achieved a higher Nusselt number compared to the 3-row configuration for all heat exchanger designs. The analysis of the individual tube rows showed the highest Nusselt numbers at the first tube row and the lowest one at the last tube row for both configurations. However, for the SIPF the difference between the first and second tube row is smaller compared to the CPF and CIPF. In order to evaluate the compactness of the heat exchanger, the volumetric heat flux density was considered. Similar to Nusselt number the volumetric heat flux density enhanced for the SIPF and reduced for the CIPF compared to the conventional design. Also the 2-row configuration reached greater thermal performance compared to the 3-row configuration. Additionally, the volume and the surface area of the heat exchanger are 6.9% and 30.7% lower for the SIPF compared to the CPF. The experimental data were used to develop an empirical heat transfer correlation between Nusselt number, Rayleigh number, fin design and tube row number.


2020 ◽  
Vol 35 (10) ◽  
pp. 1207-1216
Author(s):  
Djordje Preradov ◽  
Daniel Aloi

In this research we propose two orthogonally placed FR4 printed planar monopole antenna elements for use in the automobile roof top shark fin antenna for LTE MIMO applications. The discussed MIMO antenna system is designed to cover the worldwide LTE frequency band from 698MHz to 2700MHz. The goal of this research is to achieve satisfactory MIMO performance across the whole band while staying within physical constraints of the shark fin style antenna. The target reflection coefficient (S11) of each element is -6dB. Because of physical constraints of the automotive shark fin design antenna MIMO decorrelation is achieved by cross polarization and small distance separation. Correlation better than -12dB is targeted and achieved in higher bands, while in lower frequency bands antennas would not benefit from MIMO performance. Numerical simulation of the MIMO antenna system is performed using FEKO in order to verify the design parameters. Simulation findings are confirmed by manufacturing antennas and testing in the lab.


2020 ◽  
Vol 27 (4) ◽  
pp. 179-185
Author(s):  
Pawel Piskur ◽  
Piotr Szymak ◽  
Zygmunt Kitowski ◽  
Leszek Flis

AbstractThe technology of Autonomous Underwater Vehicles (AUVs) is developing in two main directions focusing on improving autonomy and improving construction, especially driving and power supply systems. The new Biomimetic Underwater Vehicles (BUVs) are equipped with the innovative, energy efficient driving system consisting of artificial fins. Because these driving systems are not well developed yet, there are great possibilities to optimize them, e.g. in the field of materials. The article provides an analysis of the propulsion force of the fin as a function of the characteristics of the material from which it is made. The parameters of different materials were used for the fin design and their comparison. The material used in our research was tested in a laboratory to determine the Young’s modulus. For simplicity, the same fin geometry (the length and the height) was used for each type of fin. The Euler–Bernoulli beam theory was applied for estimation of the fluid–structure interaction. This article presents the laboratory test stand and the results of the experiments. The laboratory water tunnel was equipped with specialized sensors for force measurements and fluid–structure interaction analysis. The fin deflection is mathematically described, and the relationship between fin flexibility and the generated driving force is discussed.


2020 ◽  
Vol 271 ◽  
pp. 122585
Author(s):  
Ali Allahyarzadeh-Bidgoli ◽  
Daniel Jonas Dezan ◽  
Jurandir Itizo Yanagihara

Sign in / Sign up

Export Citation Format

Share Document