notch ligand
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 41)

H-INDEX

56
(FIVE YEARS 6)

Development ◽  
2022 ◽  
Author(s):  
Joana Esteves de Lima ◽  
Cédrine Blavet ◽  
Marie-Ange Bonnin ◽  
Estelle Hirsinger ◽  
Emmanuelle Havis ◽  
...  

The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the NOTCH ligand JAGGED2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the HEYL transcriptional repressor from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maximilian Moll ◽  
Konrad Reichel ◽  
Dennis Nurjadi ◽  
Sandra Förmer ◽  
Lars Johannes Krall ◽  
...  

Vascular leakage associated with vascular endothelial cell (vEC) dysfunction is a hallmark of sepsis. Causative for the decreased integrity of the vascular endothelium (vE) is a complex concurrence of pathogen components, inflammation-associated host factors, and the interaction of vECs and activated circulating immune cells. One signaling pathway that regulates the integrity of the vE is the Notch cascade, which is activated through the binding of a Notch ligand to its respective Notch receptor. Recently, we showed that the soluble form of the Notch ligand Delta-like1 (sDLL1) is highly abundant in the blood of patients with sepsis. However, a direct connection between DLL1-activated Notch signaling and loss of vEC barrier function has not been addressed so far. To study the impact of infection-associated sDLL1, we used human umbilical vein cells (HUVEC) grown in a transwell system and cocultured with blood. Stimulation with sDLL1 induced activation as well as loss of endothelial tight structure and barrier function. Moreover, LPS-stimulated HUVEC activation and increase in endothelial cell permeability could be significantly decreased by blocking DLL1-receptor binding and Notch signaling, confirming the involvement of the cascade in LPS-mediated endothelial dysfunction. In conclusion, our results suggest that during bacterial infection and LPS recognition, DLL1-activated Notch signaling is associated with vascular permeability. This finding might be of clinical relevance in terms of preventing vascular leakage and the severity of sepsis.


Heliyon ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. e08542
Author(s):  
Mohammadreza Mohammadabadi ◽  
Seyed Hojat Masoudzadeh ◽  
Amin Khezri ◽  
Oleksandr Kalashnyk ◽  
Ruslana Volodymyrivna Stavetska ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 41-55
Author(s):  
Makoto Ando ◽  
Taisuke Kondo ◽  
Wataru Tomisato ◽  
Minako Ito ◽  
Shigeyuki Shichino ◽  
...  

T cells with a stem cell memory (TSCM) phenotype provide long-term and potent antitumor effects for T-cell transfer therapies. Although various methods for the induction of TSCM-like cells in vitro have been reported, few methods generate TSCM-like cells from effector/exhausted T cells. We have reported that coculture with the Notch ligand–expressing OP9 stromal cells induces TSCM-like (iTSCM) cells. Here, we established a feeder-free culture system to improve iTSCM cell generation from expanded chimeric antigen receptor (CAR)-expressing T cells; culturing CAR T cells in the presence of IL7, CXCL12, IGF-I, and the Notch ligand, hDLL1. Feeder-free CAR-iTSCM cells showed the expression of cell surface markers and genes similar to that of OP9-hDLL1 feeder cell–induced CAR-iTSCM cells, including the elevated expression of SCM-associated genes, TCF7, LEF1, and BCL6, and reduced expression of exhaustion-associated genes like LAG3, TOX, and NR4A1. Feeder-free CAR-iTSCM cells showed higher proliferative capacity depending on oxidative phosphorylation and exhibited higher IL2 production and stronger antitumor activity in vivo than feeder cell–induced CAR-iTSCM cells. Our feeder-free culture system represents a way to rejuvenate effector/exhausted CAR T cells to SCM-like CAR T cells. Significance: Resting CAR T cells with our defined factors reprograms exhausted state to SCM-like state and enables development of improved CAR T-cell therapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karin Schuster-Gossler ◽  
Karsten Boldt ◽  
Dorothee Bornhorst ◽  
Patricia Delany-Heiken ◽  
Marius Ueffing ◽  
...  

Abstract Objective The mammalian Notch ligand DLL1 has essential functions during development. To visualise DLL1 in tissues, for sorting and enrichment of DLL1-expressing cells, and to efficiently purify DLL1 protein complexes we tagged DLL1 in mice with AcGFPHA or Strep/FLAG. Results We generated constructs to express DLL1 that carried C-terminal in-frame an AcGFPHA tag flanked by loxP sites followed by a Strep/FLAG (SF) tag out of frame. Cre-mediated recombination replaced AcGFP-HA by SF. The AcGFPHAstopSF cassette was added to DLL1 for tests in cultured cells and introduced into endogenous DLL1 in mice by homologous recombination. Tagged DLL1 protein was detected by antibodies against GFP and HA or Flag, respectively, both in CHO cells and embryo lysates. In CHO cells the AcGFP fluorophore fused to DLL1 was functional. In vivo AcGFP expression was below the level of detection by direct fluorescence. However, the SF tag allowed us to specifically purify DLL1 complexes from embryo lysates. Homozygous mice expressing AcGFPHA or SF-tagged DLL1 revealed a vertebral column phenotype reminiscent of disturbances in AP polarity during somitogenesis, a process most sensitive to reduced DLL1 function. Thus, even small C-terminal tags can impinge on sensitive developmental processes requiring DLL1 activity.


2021 ◽  
Author(s):  
John Hoon Rim ◽  
Byunghwa Noh ◽  
Young Ik Koh ◽  
Sun Young Joo ◽  
Kyung Seok Oh ◽  
...  

AbstractSki-slope hearing loss (HL), which refers to increased auditory threshold at high frequencies, is common in adults. However, genetic contributions to this post-lingual HL remain largely unknown. Here, we prospectively investigated deafness-associated and novel candidate genes causing ski-slope HL. We analyzed 192 families with post-lingual HL via gene panel and/or exome sequencing. With an overall molecular diagnostic rate of 35.4% (68/192) in post-lingual HL, ski-slope HL showed a lower diagnostic rate (30.7%) compared with other conditions (40.7%). In patients who showed HL onset before the age of 40, genetic diagnostic probability was significantly lower for ski-slope HL than for other conditions. Further analysis of 51 genetically undiagnosed patients in the ski-slope HL group identified three variants in delta-like ligand 1 (DLL1), a Notch ligand, which presented in vitro gain-of-function effects on Notch downstream signaling. In conclusion, genetic diagnostic rates in post-lingual HL varied according to audiogram patterns with age-of-onset as a confounding factor. DLL1 was identified as a candidate gene causing ski-slope HL.


2021 ◽  
Author(s):  
James Frederick Henry Pittaway ◽  
Constantinos Lipsos ◽  
Katia Mariniello ◽  
Leonardo Guasti

Delta like non-canonical Notch ligand 1 (DLK1) is a cleavable single-pass transmembrane protein and a member of the Notch/Delta/Serrate family. It is paternally expressed and belongs to a group of imprinted genes located on chromosome band 14q32 in humans and 12qF1 in mice. DLK1 is expressed in many human tissues during embryonic development but in adults expression is low and is mostly restricted to (neuro)endocrine tissues and other immature stem/progenitor cells (notably hepatoblasts). However, DLK1 is expressed at a high frequency in many common malignancies (liver, breast, brain, pancreas, colon and lung). More recently, high levels of expression have been identified in endocrine related cancers such as ovarian and adrenocortical carcinoma. There is growing evidence that DLK1 expression in cancer is associated with worse prognosis and that DLK1 may be a marker of cancer stem cells. Although the exact mechanism through which DLK1 functions is not fully understood, it is known to maintain cells in an undifferentiated phenotype and has oncogenic properties. These effects are partly exacted through interaction with the Notch signalling pathway. In this review, we have detailed the functional role of DLK1 within physiology and malignancy and posit a mechanism for how it exacts its oncogenic effects. In describing the expression of DLK1 in cancer and in healthy tissue, we have highlighted the potential for its use both as a biomarker and as a potential therapeutic target.


2021 ◽  
Author(s):  
Karin Schuster-Gossler ◽  
Karsten Boldt ◽  
Dorothee Bornhorst ◽  
Patricia Delany-Heiken ◽  
Marius Ueffing ◽  
...  

Abstract ObjectiveThe mammalian Notch ligand DLL1 has essential functions during development. To visualise DLL1 in tissues, for sorting and enrichment of DLL1-expressing cells, and to efficiently purify DLL1 protein complexes we tagged DLL1 in mice with AcGFPHA or Strep/FLAG. ResultsWe generated constructs to express DLL1 that carried C-terminal in-frame an AcGFPHA tag flanked by loxP sites followed by a Strep/FLAG (SF) tag out of frame. Cre-mediated recombination replaced AcGFP-HA by SF. The AcGFPHAstopSF cassette was added to DLL1 for tests in cultured cells and introduced into endogenous DLL1 in mice by homologous recombination. Tagged DLL1 protein was detected by antibodies against GFP and HA or Flag, respectively, both in CHO cells and embryo lysates. In CHO cells the AcGFP protein fused to DLL1 was functional. In vivo AcGFP expression was below the level of detection by direct fluorescence. However, the SF tag allowed us to specifically purify DLL1 complexes from embryo lysates. Homozygous mice expressing AcGFPHA or SF-tagged DLL1 revealed a vertebral column phenotype reminiscent of disturbances in AP polarity during somitogenesis, a process most sensitive to reduced DLL1 function. Thus, even small C-terminal tags can impinge on sensitive developmental processes requiring DLL1 activity.


2021 ◽  
Author(s):  
Kentaro Matsuo ◽  
Kohei Taniguchi ◽  
Hiroki Hamamoto ◽  
Yosuke Inomata ◽  
Kazumasa Komura ◽  
...  

2021 ◽  
Author(s):  
Joana Sales-Dias ◽  
Andreia Ferreira ◽  
Márcia Lamy ◽  
Giacomo Domenici ◽  
Sandra M.S. Monteiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document