plastic substrates
Recently Published Documents


TOTAL DOCUMENTS

810
(FIVE YEARS 77)

H-INDEX

67
(FIVE YEARS 4)

Author(s):  
Pratik Joshi ◽  
Parand R. Riley ◽  
Warren Denning ◽  
Shubhangi Shukla ◽  
Nayna Khosla ◽  
...  

Plasma and laser-based processing for tailoring DLC thin film properties for state-of-the-art wearable sensing applications.


2021 ◽  
Author(s):  
Kuibo Lan ◽  
Zhi Wang ◽  
Xiaodong Yang ◽  
Junqing Wei ◽  
Yuxiang Qin ◽  
...  

Abstract Acetone commonly exists in daily life and is harmful to human health, therefore the convenient and sensitive monitoring of acetone is highly desired. In addition, flexible sensors have the advantages of light-weight, conformal attachable to irregular shapes, etc. In this study, we fabricated high performance flexible silicon nanowires (SiNWs) sensor for acetone detection by transferring the monocrystalline Si film and metal-assisted chemical etching method on polyethylene terephthalate (PET). The SiNWs sensor enabled detection of gaseous acetone with a concentration as low as 0.1 parts per million (ppm) at flat and bending states. The flexible SiNWs sensor was compatible with the CMOS process and exhibited good sensitivity, selectivity and repeatability for acetone detection at room temperature. The flexible sensor showed performance improvement under mechanical bending condition and the underlying mechanism was discussed. The results demonstrated the good potential of the flexible SiNWs sensor for the applications of wearable devices in environmental safety, food quality, and healthcare.


Author(s):  
Xiaodong Yang ◽  
Bowen Geng ◽  
Junqing Wei ◽  
Zhi Wang ◽  
Kuibo Lan ◽  
...  

Abstract Flexible integrated circuits (ICs) have gained a lot of attentions in recent years for their emerging application in wearable electronics. Flexible thin-film transistors (TFTs) with low-cost and high-performance are highly desirable as essential and fundamental element for most of the flexible applications. In this paper, we fabricated single-crystalline silicon nanomembrane (SiNM) based TFTs with anodized aluminum oxide (AAO) as dielectric material on glass and flexible plastic substrates. Good quality AAO was obtained on plastic substrates at room temperature. AFM was used for surface morphology of AAO gate dielectric layers on different substrates (i.e. glass, polyethylene terephthalate (PET) and SU-8 coated PET). The electrical characteristics of the AAO gate dielectric layers on different substrates were also analyzed with metal- dielectric-metal (MIM) capacitors. SiNMs were processed with complementary metal oxide semiconductor (CMOS) compatible semiconductor process (e.g. photolithography, ion implantation, thermal annealing, reactive ion etching, metal evaporation, etc.), and then transferred to the substrates with AAO/aluminum stack layers. Performances of transistors on glass and plastic substrates were characterized. Compared with the TFT fabricated on glass substrate, TFT fabricated directly on a PET substrate have lower performance due to poor surface roughness. For optimization of the surface roughness, PET was modified with coating SU-8 photoresist. By this way, TFT had properties close to that on glass substrate. AAO that can be manufactured at room temperature provides a simple and low-cost solution for high-performance flexible single-crystalline SiNM TFTs.


Author(s):  
Tomi Koskinen ◽  
Vladislav Khayrudinov ◽  
Fahimeh Emadi ◽  
Hua Jiang ◽  
Tuomas Haggren ◽  
...  

2021 ◽  
Author(s):  
Anayantzi Luna ◽  
Ovier Obregon ◽  
Jose L. Sosa-Sanchez ◽  
Miguel A. Dominguez

2021 ◽  
Vol 6 (4) ◽  
pp. 045005
Author(s):  
Krystopher S Jochem ◽  
Panayiotis Kolliopoulos ◽  
C Daniel Frisbie ◽  
Lorraine F Francis

2021 ◽  
Vol 13 (17) ◽  
pp. 9851
Author(s):  
Katsuyuki Kozake ◽  
Tsuyoshi Egawa ◽  
Satoshi Kunii ◽  
Hiroki Kawaguchi ◽  
Toru Okada ◽  
...  

The share of digital printing on flexible plastic packaging has been increasing rapidly in response to the market demand for agility in Japan. To meet all these challenges, our response is the aqueous inkjet ink “LUNAJET®”. By combining aqueous pigment nanodispersions with precise interfacial control technologies, “LUNAJET®” can contribute to the rapid digitization of flexible package printing while, at the same time, improving the environmental performance. Our analysis includes an evaluation of the environmental impact due to the conversion from gravure printing with an analog press to digital printing using an inkjet printer with water-based inks. In addition, inventory analyses and characterizations were carried out. It is shown that a 75% reduction in CO2 emissions and 33% reduction in VOC (volatile organic compounds) emissions can be expected, particularly in small-lot printing, where digital printing is most desirable. An environmental impact assessment was conducted in Japan, based upon the LIME3 (life cycle impact assessment method based on endpoint modeling version 3) approach. It was found that the waste reduction rate for aqueous inkjet printing, compared to analog printing, was as high as 57% for small-lot production, assuming a large variety of products; surprisingly, the reduction rate remained at 15%, even for long production runs. As the market rushes to embrace digital printing technologies for packaging, these results indicate that implementing inkjet printing using aqueous ink for flexible plastic substrates can reduce waste and decrease the environmental burden, both for short as well as long printing runs.


2021 ◽  
Vol 22 (17) ◽  
pp. 9177
Author(s):  
Jing Yang Tee ◽  
Alan Mackay-Sim

Cell migration is critical for brain development and linked to several neurodevelopmental disorders, including schizophrenia. We have shown previously that cell migration is dysregulated in olfactory neural stem cells from people with schizophrenia. Although they moved faster than control cells on plastic substrates, patient cells were insensitive to regulation by extracellular matrix proteins, which increase the speeds of control cells. As well as speed, cell migration is also described by directional persistence, the straightness of movement. The aim of this study was to determine whether directional persistence is dysregulated in schizophrenia patient cells and whether it is modified on extracellular matrix proteins. Directional persistence in patient-derived and control-derived olfactory cells was quantified from automated live-cell imaging of migrating cells. On plastic substrates, patient cells were more persistent than control cells, with straighter trajectories and smaller turn angles. On most extracellular matrix proteins, persistence increased in patient and control cells in a concentration-dependent manner, but patient cells remained more persistent. Patient cells therefore have a subtle but complex phenotype in migration speed and persistence on most extracellular matrix protein substrates compared to control cells. If present in the developing brain, this could lead to altered brain development in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document