single tube
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 145)

H-INDEX

51
(FIVE YEARS 6)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Jinfeng Wang ◽  
Wanying Chang ◽  
Jing Xie

In this paper, the electronic expansion valve (EXV) on the single-tube heat exchange experimental platform was used as a research object. Firstly, the EXVs were selected according to the experimental requirements, and the functional parameters were set. Subsequently, the effective opening ranges of the EXVs were determined by manual control, and the control effects of the EXVs installed at the front and back ends of the test section were compared. Finally, by self-tuning and optimizing the best response curves, the proportional and integral coefficients suitable for the experimental platform were obtained; thus, the automatic intelligent control of EXV based on the proportional integral (PI) control algorithm was realized. From setting EXV functional parameters to realizing PI control, an appropriate experimental system-debugging solution for the whole process could be obtained. Based on the solution, the system stability could be improved, and the transition process time could be shortened. Furthermore, the solution also provided a method to guarantee the accuracy of experimental data and could be applied to the debugging of similar experimental systems.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
Han-Nui Gil ◽  
Trieu-Vuong Dinh ◽  
Jee-Hyun Lee ◽  
Byeong-Gyu Park ◽  
In-Young Choi ◽  
...  

A high humidity at a high temperature presents a common challenge in monitoring the air pollutants emitted from stationary sources. Thus, humidity removal is a pivotal issue. In this study, the effect of humidity pretreatment devices (HPDs) on hydrogen chloride (HCl) gas emitted from an incinerator stack was investigated. A conventional cooler (HPD_CL), and poly-tube (HPD_NP) and single-tube (HPD_NS) Nafion™ dryers were used as HPDs in this study. HCl concentrations varied at five and 10 parts per million in volume (ppmv). Low (i.e., ~4%) and high (i.e., ~17%) humidities were generated at 180 °C. The removal efficiencies of humidity and the loss rates of HCl by the devices were determined. The removal efficiencies of humidity by HPD_CL and the two dryers were found to be similar, at approximately 85% at a low humidity and 95% at a high humidity. In terms of HCl loss rates, HPD_CL revealed the highest loss rates in all conditions (i.e., >95%), followed by HPD_NP and HPD_NS. At normal room temperature (i.e., 25 °C), the HCl loss rates of HPD_NP were >40% at a low humidity and >70% at a high humidity, while those of HPD_NS were >10% at a low humidity and >60% at a high humidity. The performance of the two dryers improved when they were heated to 80 °C. However, this temperature caused damage to the dryers, which reduced their lifetime.


Author(s):  
Kerou Zhang ◽  
Luis Rodriguez ◽  
Lauren Yuxuan Cheng ◽  
Michael Wang ◽  
David Yu Zhang

Author(s):  
Anupong Pansuwan ◽  
Duangrudee Changtrakul ◽  
Attawut Chaibunruang ◽  
Supawadee Yamsri ◽  
Kanokwan Sanchaisuriya ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1875-1875
Author(s):  
Archana Ramesh ◽  
Samuel Koo ◽  
Soo Jin Kang ◽  
Abhisek Ghosal ◽  
Francys Alarcon ◽  
...  

Abstract Background: Acute Lymphocytic Leukemia (ALL) is the most common childhood cancer and accounts for about a quarter of adult acute leukemias. Current NCCN recommendations for clinical testing for risk stratification and treatment guidance include karyotyping, FISH testing for translocations, and RT-PCR for gene fusions and sequencing for DNA mutations detection. Most NGS based approaches test DNA mutations and RNA fusions separately, thereby requiring higher input material and multiple workflows adding to the cost and turn-around-time. An NGS based assay for the detection of DNA variants (NeoGenomics Heme NGS assay) in heme malignancies using Total Nucleic Acid (TNA) is already available in our clinical laboratory and complements FISH based fusion detection and karyotyping but an integral assay to detect both DNA and RNA alterations with a simple workflow for ALL is needed. Methods: We used TNA or RNA spiked-in with DNA to simulate TNA samples, extracted from 93 bone marrow and peripheral blood samples from patients and healthy donors, along with commercial fusion reference myeloid samples Seraseq Myeloid Fusion RNA Mix (SeraCare Inc.) controls. DNA/RNA libraries were prepared using a custom amplicon based Multimodal NGS panel (Qiagen Inc.) targeting 297 genes and 213 genes (select exons) for DNA and RNA fusion detection, respectively. The enriched dual indexed amplicon libraries were sequenced on an Illumina NovaSeq 6000. The sequence data was processed with a customized bioinformatic pipeline for DNA variant as well as a novel machine learning algorithm for RNA fusion detection. We analyzed sensitivity, specificity, accuracy, reproducibility, and repeatability for clinical use. The DNA variants were orthogonally confirmed using other NGS assays, and the RNA fusions were confirmed on an RNA-seq Archer assay or RT-Sanger confirmation assays. Results: Here, we developed and validated a single tube comprehensive NGS panel using a custom multimodal chemistry that uses TNA as input for simultaneous dual detection of DNA and RNA abnormalities in ALL patients' samples. We performed the analytical validation of our Heme NGS assay for the RNA panel to detect fusions in ALL, using TNA input for comprehensive DNA and RNA mutation detection. The fusion concordance was 95% for the RNA fusion panel. The assay detected BCR-ABL1 (7/7), ETV6-RUNX1 (1/1), KMT2A fusions (4/5), TCF3-PBX1 (1/1), and PCM1-JAK2(1/1). The specificity was determined at 100% using a set of 42 fusion negative samples. The limit of detection (LOD) was analyzed using serial dilutions to up to 3 log reduction (LR) using a the Seraseq Myeloid Fusion sample. The fusions were detected down to 1 LR. The reproducibility was tested using a positive fusion and Seraseq samples across three runs and was reported at 100%. Next, a small cohort of ALL samples (n=8) was included as part of this study to simultaneously evaluate DNA and RNA mutations. We detected pathogenic DNA variants in genes previously reported in ALL that included NOTCH1, PTEN, FLT3, IKZF1, JAK1, JAK2, KRAS, NF1, PAX5, U2AF1, TP53, and also RNA fusion BCR-ABL1, and the results were confirmed by an orthogonal NGS assay (NexCourse and RNA-Seqv1 for fusions). One sample carrying a BCR-ABL1 fusion (detected by RNA panel) also harbored mutations in IKZF1 in DNA (detected by DNA panel) that is reported as unfavorable prognostic biomarker for Ph-Like ALL demonstrating comprehensive panel could identify multiple variants within the same sample, demonstrating the advantage DNA+RNA testing has over the classical single gene FISH/RT-PCR testing for the efficient risk stratification and treatment in ALL patients. Conclusions: In this study, we demonstrated that the single tube TNA based NeoGenomics NGS assay can simultaneously detect the DNA and RNA biomarkers associated with ALL for improved diagnostic and prognostic recommendations. The single-tube assay for detection of both RNA fusions and DNA variants using the same sample could offer comprehensive and cost-effective solution for clinical laboratory test for ALL patient care. This is a promising approach that might be used as a dual DNA/RNA alterations detection on other hematological neoplasia. Disclosures Ramesh: Neo Genomics Laboratories: Current Employment. Koo: Neo Genomics Laboratories: Current Employment. Kang: Neo Genomics Laboratories: Current Employment. Ghosal: NeoGenomics Laboratories: Current Employment. Alarcon: NeoGenomics Laboratories: Current Employment. Gyuris: Neo Genomics Laboratories: Current Employment. Jung: NeoGenomics Laboratories, Inc.: Current Employment. Magnan: NeoGenomics Laboratories, Inc.: Current Employment. Nam: NeoGenomics Laboratories, Inc.: Current Employment. Thomas: NeoGenomics Laboratories, Inc.: Current Employment. Fabunan: NeoGenomics Laboratories, Inc.: Current Employment. Petersen: Neo Genomics Laboratories: Current Employment. Lopez-Diaz: NeoGenomics Laboratories, Inc.: Current Employment. Bender: NeoGenomics Laboratories, Inc.: Current Employment. Agersborg: NeoGenomics Laboratories, Inc.: Current Employment. Ye: Neo Genomics Laboratories: Current Employment. Funari: NeoGenomics Laboratories, Inc.: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document