successful transmission
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Elena Sugrue ◽  
Arthur Wickenhagen ◽  
Nardus Mollentze ◽  
Muhamad Afiq Aziz ◽  
Vattipally B Sreenu ◽  
...  

HIV-1 transmission via sexual exposure is a relatively inefficient process. When successful transmission does occur, newly infected individuals are colonized by either a single or a very small number of establishing virion(s). These transmitted founder (TF) viruses are more interferon (IFN) resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced ′antiviral state′ than TF viruses, we established a pair of fluorescent GFP-IRES-Nef TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening. The relatively uniform ISG resistance of transmitted HIV-1 directed us to investigate the underlying mechanism. Our subsequent in silico simulations, modelling, and in vitro characterisation of a model TF/CC pair (closely matched in replicative fitness), revealed that small differences in replicative growth rates can explain the broad IFN resistance displayed by transmitted HIV-1. We propose that the apparent IFN resistance of transmitted HIV-1 is a consequence of enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8058
Author(s):  
Christian E. Galarza ◽  
Jonathan M. Palma ◽  
Cecilia F. Morais ◽  
Jaime Utria ◽  
Leonardo P. Carvalho ◽  
...  

This paper proposes a new theoretical stochastic model based on an abstraction of the opportunistic model for opportunistic networks. The model is capable of systematically computing the network parameters, such as the number of possible routes, the probability of successful transmission, the expected number of broadcast transmissions, and the expected number of receptions. The usual theoretical stochastic model explored in the methodologies available in the literature is based on Markov chains, and the main novelty of this paper is the employment of a percolation stochastic model, whose main benefit is to obtain the network parameters directly. Additionally, the proposed approach is capable to deal with values of probability specified by bounded intervals or by a density function. The model is validated via Monte Carlo simulations, and a computational toolbox (R-packet) is provided to make the reproduction of the results presented in the paper easier. The technique is illustrated through a numerical example where the proposed model is applied to compute the energy consumption when transmitting a packet via an opportunistic network.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5469
Author(s):  
Hoang Thien Van ◽  
Quyet-Nguyen Van ◽  
Danh Hong Le ◽  
Hoang-Phuong Van ◽  
Jakub Jalowiczor ◽  
...  

This manuscript investigates the system performance of hybrid wireless and power line communication networks for indoor Internet of Things applications. Differentiating itself from the existing literature, the performance of the direct link and dual-hop energy harvesting relay-aided links is analyzed under the condition of indoor fading modeled by log-normal distribution. Moreover, the manuscript presents the analytical expressions of the successful transmission probability of the deployed opportunistic decode-and-forward and amplify-and-forward relay selection scheme, and validates them with Monte Carlo simulations. Moreover, the impact of different system parameters on the successful transmission probability is revealed. For the considered hybrid system, in general, the opportunistic decode-and-forward relaying scheme outperforms the opportunistic amplify-and-forward relaying scheme. As importantly, increasing the source to relay distance and power splitting ratio over certain limits significantly deteriorates the system performance, indicated by the decrease in the successful transmission probability.


2021 ◽  
Author(s):  
Julia Port ◽  
Claude Kwe Yinda ◽  
Victoria Avanzato ◽  
Jonathan Schulz ◽  
Myndi Holbrook ◽  
...  

Abstract Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 µm traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5060
Author(s):  
Malak Abid Ali Khan ◽  
Hongbin Ma ◽  
Syed Muhammad Aamir ◽  
Ying Jin

(1) Background: The scientific development in the field of industrialization demands the automization of electronic shelf labels (ESLs). COVID-19 has limited the manpower responsible for the frequent updating of the ESL system. The current ESL uses QR (quick response) codes, NFC (near-field communication), and RFID (radio-frequency identification). These technologies have a short range or need more manpower. LoRa is one of the prominent contenders in this category as it provides long-range connectivity with less energy harvesting and location tracking. It uses many gateways (GWs) to transmit the same data packet to a node, which causes collision at the receiver side. The restriction of the duty cycle (DC) and dependency of acknowledgment makes it unsuitable for use by the common person. The maximum efficiency of pure ALOHA is 18.4%, while that of slotted ALOHA is 36.8%, which makes LoRa unsuitable for industrial use. It can be used for applications that need a low data rate, i.e., up to approximately 27 Kbps. The ALOHA mechanism can cause inefficiency by not eliminating fast saturation even with the increasing number of gateways. The increasing number of gateways can only improve the global performance for generating packets with Poisson law having a uniform distribution of payload of 1~51 bytes. The maximum expected channel capacity usage is similar to the pure ALOHA throughput. (2) Methods: In this paper, the improved ALOHA mechanism is used, which is based on the orthogonal combination of spreading factor (SF) and bandwidth (BW), to maximize the throughput of LoRa for ESL. The varying distances (D) of the end nodes (ENs) are arranged based on the K-means machine learning algorithm (MLA) using the parameter selection principle of ISM (industrial, scientific and medical) regulation with a 1% DC for transmission to minimize the saturation. (3) Results: The performance of the improved ALOHA degraded with the increasing number of SFs and as well ENs. However, after using K-mapping, the network changes and the different number of gateways had a greater impact on the probability of successful transmission. The saturation decreased from 57% to 1~2% by using MLA. The RSSI (Received Signal Strength Indicator) plays a key role in determining the exact position of the ENs, which helps to improve the possibility of successful transmission and synchronization at higher BW (250 kHz). In addition, a high BW has lower energy consumption than a low BW at the same DC with a double-bit rate and almost half the ToA (time on-air).


2021 ◽  
Author(s):  
Julia Port ◽  
Kwe Claude Yinda ◽  
Victoria Avanzato ◽  
Jonathan Schulz ◽  
Myndi Holbrook ◽  
...  

Airborne transmission, a term combining both large droplet and aerosol transmission, is thought to be the main transmission route of SARS-CoV-2. Here we investigated the relative efficiency of aerosol transmission of two variants of SARS-CoV-2, B.1.1.7 (alpha) and lineage A, in the Syrian hamster. A novel transmission caging setup was designed and validated, which allowed the assessment of transmission efficiency at various distances. At 2 meters distance, only particles <5 micrometer traversed between cages. In this setup, aerosol transmission was confirmed in 8 out of 8 (N = 4 for each variant) sentinels after 24 hours of exposure as demonstrated by respiratory shedding and seroconversion. Successful transmission occurred even when exposure time was limited to one hour, highlighting the efficiency of this transmission route. Interestingly, the B.1.1.7 variant outcompeted the lineage A variant in an airborne transmission chain after mixed infection of donors. Combined, this data indicates that the infectious dose of B.1.1.7 required for successful transmission may be lower than that of lineage A virus. The experimental proof for true aerosol transmission and the increase in the aerosol transmission potential of B.1.1.7 underscore the continuous need for assessment of novel variants and the development or preemptive transmission mitigation strategies.


2021 ◽  
pp. 213-240
Author(s):  
Paul Schmid-Hempel

Transmission is a key process for parasites. Different routes (e.g. faecal–oral) and modes (e.g. by aerosols or vectors) exist. A major context is vertical (to offspring) or horizontal (all other) transmission. All components of the transmission process evolve. Successful transmission includes the infection of a new host. Macroparasites typically infect as individuals, but microparasites need an infective dose. Doses vary enormously among parasites. Various models describe variation in infective dose. Process-based models assume random colonization, co-operative parasite manipulation, or are focused on early dynamics. With the processes of pathogenesis (e.g. tissue destruction, reducing host capacities), damage to the host emerges. Virulence factors are important mediators of parasite success and often involved in host manipulation and pathogenesis, including immunopathology.


Sign in / Sign up

Export Citation Format

Share Document