redox control
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 66)

H-INDEX

77
(FIVE YEARS 6)

Author(s):  
Pauline E. Galy ◽  
Tiffany Guitton-Spassky ◽  
Catherine Sella ◽  
Laurent Thouin ◽  
Maxime R. Vitale ◽  
...  

2021 ◽  
Author(s):  
Qianhui Dou ◽  
Anton A Turanov ◽  
Marco Mariotti ◽  
Jae Yeon Hwang ◽  
Huafeng Wang ◽  
...  

Thioredoxin/glutathione reductase (TGR, TXNRD3) is a thiol oxidoreductase of unknown function composed of thioredoxin reductase and glutaredoxin domains. This NADPH-dependent enzyme evolved by gene duplication within the Txnrd family, is expressed in the testes and can reduce both thioredoxin and glutathione in vitro. To characterize the function of TXNRD3 in vivo, we generated a strain of mice with the deletion of Txnrd3 gene. We show that Txnrd3 knockout mice are viable and without discernable gross phenotypes, but TXNRD3 deficiency leads to fertility impairment in male mice. Txnrd3 knockout animals exhibit a lower fertilization rate in vitro, a sperm movement phenotype and an altered redox status of thiols. Proteomic analyses revealed a broad range of substrates reduced by TXNRD3 during sperm maturation, presumably as a part of quality control. The results show that TXNRD3 plays a critical role in male reproduction via the thiol redox control of spermatogenesis.


2021 ◽  
Vol 177 ◽  
pp. S58
Author(s):  
George A. Timmons ◽  
Richard G. Carroll ◽  
James R. O'Siorain ◽  
Mariana P. Cervantes-Silva ◽  
Eva Palsson-McDermott ◽  
...  

Author(s):  
Ágnes Gallé ◽  
Krisztina Bela ◽  
Ádám Hajnal ◽  
Nóra Faragó ◽  
Edit Horváth ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2707
Author(s):  
Bowen Li ◽  
Yichun Huang ◽  
Hui Ming ◽  
Edouard C. Nice ◽  
Rongrong Xuan ◽  
...  

Following efficient tumor therapy, some cancer cells may survive through a dormancy process, contributing to tumor recurrence and worse outcomes. Dormancy is considered a process where most cancer cells in a tumor cell population are quiescent with no, or only slow, proliferation. Recent advances indicate that redox mechanisms control the dormant cancer cell life cycle, including dormancy entrance, long-term dormancy, and metastatic relapse. This regulatory network is orchestrated mainly through redox modification on key regulators or global change of reactive oxygen species (ROS) levels in dormant cancer cells. Encouragingly, several strategies targeting redox signaling, including sleeping, awaking, or killing dormant cancer cells are currently under early clinical evaluation. However, the molecular mechanisms underlying redox control of the dormant cancer cell cycle are poorly understood and need further exploration. In this review, we discuss the underlying molecular basis of redox signaling in the cell life cycle of dormant cancer and the potential redox-based targeting strategies for eliminating dormant cancer cells.


Author(s):  
Timothy J. Humpton ◽  
Holly Hall ◽  
Christos Kiourtis ◽  
Colin Nixon ◽  
William Clark ◽  
...  

AbstractThe p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.


Sign in / Sign up

Export Citation Format

Share Document