linear flow
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 81)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 817
Author(s):  
Jang Hyun Lee ◽  
Juhairi Aris Bin Muhamad Shuhili

Pressure transient analysis for a vertically hydraulically fractured well is evaluated using two different equations, which cater for linear flow at the early stage and radial flow in the later stage. However, there are three different stages that take place for an analysis of pressure transient, namely linear, transition and pseudo-radial flow. The transition flow regime is usually studied by numerical, inclusive methods or approximated analytically, for which no specific equation has been built, using the linear and radial equations. Neither of the approaches are fully analytical. The numerical, inclusive approach results in separate calculations for the different flow regimes because the equation cannot cater for all of the regimes, while the analytical approach results in a difficult inversion process to compute well test-derived properties such as permeability. There are two types of flow patterns in the fracture, which are uniform and non-uniform, called infinite conductivity in a high conductivity fracture. The study was conducted by utilizing an analogous study of linear flow equations. Instead of using the conventional error function, the exponential integral with an infinite number of wells was used. The results obtained from the developed analytical solution matched the numerical results, which proved that the equation was representative of the case. In conclusion, the generated analytical equation can be directly used as a substitute for current methods of analyzing uniform flow in a hydraulically fractured well.


Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 4) ◽  
Author(s):  
Meng Sun ◽  
Hongxin Guo ◽  
Wenqi Zhao ◽  
Peng Wang ◽  
Lun Zhao ◽  
...  

Abstract The purpose of this study is to introduce a new three-linear flow model for capturing the dynamic behavior of water flooding with different fracture occurrences in carbonate reservoirs. Low-angle and high-angle fractures with different occurrences are usually developed in carbonate reservoirs. It is difficult to simulate the water injection development process and the law of water flooding is unclear, due to the large variation of the fracture dip. Based on the characteristics of water flooding displacement streamlines in fractured cores with different occurrences, the matrix is discretized into a number of one-dimensional linear subregions, and the channeling effect between each subregion is considered in this paper. The fractures are divided into the same number of fracture cells along with the matrix subregion, and the conduction effect between the fracture cells is considered. The fractured core injection-production system is divided into three areas of linear flow: The injected fluid flows horizontally and linearly from the matrix area at the inlet end of the core to the fracture and then linearly diverts from the fracture area. Finally, the matrix area at the outlet end of the core also presents a horizontal linear flow pattern. Thus, a trilinear flow model for water flooding oil in fractured cores with different occurrences is established. The modified BL equation is used to construct the matrix water-flooding analytical solution, and the fracture system establishes a finite-volume numerical solution, forming a high-efficiency semianalytical solution method for water-flooding BL-CVF. Compared with traditional numerical simulation methods, the accuracy is over 86%, the model is easy to construct, and the calculation efficiency is high. In addition, it can flexibly portray cracks at any dip angle, calculate various indicators of water flooding, and simulate the pressure field and saturation field, with great application effect. The research results show that the greater the fracture dip angle, the higher the oil displacement efficiency. When the fracture dip angle is above 45°, the fracture occurrence has almost no effect on the oil displacement efficiency. The water breakthrough time of through fractures is earlier than that of nonthrough fractures, and the oil displacement efficiency and injection pressure are more significantly affected by the fracture permeability. With the increase of fracture permeability, the oil displacement efficiency and the injection pressure of perforated fractured cores dropped drastically. The findings of this study can help for better understanding of the water drive law and optimizing its parameters in cores with different fracture occurrences. The three-linear flow model has strong adaptability and can accurately solve low-permeability reservoirs and high-angle fractures, but there are some errors for high-permeability reservoirs with long fractures.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Ewa Bernacka ◽  
Hanna Jaroszek ◽  
Marian Turek ◽  
Piotr Dydo ◽  
Dymitr Czechowicz ◽  
...  

Waste glycerol generated during biofuel production accounts for ~10% of total biodiesel volume. Increasing the use of renewable energy sources, including so-called biodiesel, will significantly increase the amount of waste glycerol for disposal. One possible route for waste glycerol reuse is to use it as a draw solution in forward osmosis (FO). Glycerol solutions are particularly suited as FO draw solutions due to their high osmotic pressures. In this work, the effects of waste glycerol composition on FO draw solution osmotic pressures, as well as the effects of membrane type and linear flow velocities on FO water and reverse flux, were investigated. Those results indicated the feasibility of using waste glycerol as a draw solution in FO, allowing the reuse of significant amounts of this by-product.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Emma Jane Horn ◽  
Oluwaseun O. Oyekola ◽  
Pamela Jean Welz ◽  
Robert Paul van Hille

The tanning process generates a saline effluent with high residual organics, sulfate and sulfide concentrations. The transition from a linear to circular economy requires reimagining of waste streams as potential resources. The organics in tannery effluent have the potential to be converted to renewable energy in the form of biogas if inhibitors to anaerobic digestion are removed. Hybrid linear flow channel reactors inoculated with culture-enriched halophilic sulfate reducing bacteria from saline environments were evaluated as a novel pretreatment step prior to anaerobic digestion for the concurrent removal of sulfur species and resource recovery (elemental sulfur and biogas). During continuous operation of a 4-day hydraulic retention time, the reactors were capable of near-complete sulfide oxidation (>97%) and a sulfate reduction efficiency of 60–80% with the formation of a floating sulfur biofilm containing elemental sulfur. Batch anaerobic digestion tests showed no activity on untreated tannery effluent, while the pretreated effluent yielded 130 mL methane per gram COD consumed.


2021 ◽  
Author(s):  
Clay Kurison ◽  
Ahmed M. Hakami ◽  
Sadi H. Kuleli

Abstract Unconventional shale reservoirs are characterized by low porosity and ultra-low permeability. Natural fractures are known to be present and considered a critical factor for the enhanced post-stimulation productivity. Accounting for natural fractures with existing techniques has not been widely adopted owing to their complexity or lack of validation. Ongoing research efforts are striving to understand how natural fractures can be accounted for and accurately modeled in fluid flow of the subject reservoirs. This study utilized Eagle Ford well data comprising reservoir properties, stimulation metrics, production, microseismicity and permeability measurements from a core plug. The methodology comprised use of production data to extract a linear flow regime parameter. This was coupled with fracture geometry, predicted from hydraulic fracture modeling and microseismicity, to estimate the system permeability. From interpreting microseismic events as slips on critically stressed natural fractures, explicit modeling incorporating a discrete fracture network (DFN) assumed activated natural fractures supplement conductive reservoir contact area. Thus, allowed the estimation of matrix permeability. For validation, the aforementioned was compared with core plug permeability measurements. Results from modeling of planar hydraulic fractures, with microseismicity as validation, predicted planar fracture geometry which when coupled with the linear flow parameter resulted in a system permeability. Incorporation of DFNs to account for activated natural fractures yielded matrix permeability in picodarcy range. A review of laboratory permeability measurements exhibited stress dependence with the value at the maximum experimental confining pressure of 4000 psi in the same range as the computed system permeability. However, the confining pressures used in the experiments were less than the in situ effective stress. Correction for representative stress yielded an ultra-low matrix permeability in the same range as the DFN-based picodarcy matrix permeability. Thus, supporting the adopted drainage architecture and often suggested role of natural fractures in shale reservoir fluid flow. This study presents a multi-discipline workflow to account for natural fractures, and contributes to understanding that will improve laboratory petrophysics and the overall reservoir characterization of the subject reservoirs. Given that the Eagle Ford is an analogue of emerging shales elsewhere, results from this study can be widely adopted.


Grundwasser ◽  
2021 ◽  
Author(s):  
Sara Vassolo ◽  
Christian Tiberghien ◽  
Christoph Neukum ◽  
Désiré Baranyikwa ◽  
Melchior Ryumeko ◽  
...  

AbstractDue to population growth, the city of Gitega in the central part of Burundi is lacking drinking water. Therefore, the national urban water supply company decided to expand the Nyanzari wellfield by drilling additional wells.Two additional wells were drilled to 80 m (F7.2) and 85 m (F8bis) depths. Step tests followed by 72-hours aquifer tests were performed in each well. Results indicate bilinear flow followed by linear flow and radial flow in F7.2. No reaction was observed in observation wells. Fracture-matrix transmissivity was estimated at 3 · 10−4 m2/s. In the case of F8bis, linear flow in an infinite flow fracture followed by radial flow was visible. Reaction was measured in observation wells. Transmissivity was estimated at 3.3 · 10−3 m2/s.Both wells lie no more than 300 m apart, but no evidence of interference between them was depicted during the tests. It appears that two independent fracture systems prevail in the wellfield.


2021 ◽  
Vol 22 (23) ◽  
pp. 13014
Author(s):  
Dorota Babilas ◽  
Anna Kowalik-Klimczak ◽  
Piotr Dydo

Due to the extensive range of ionic liquids (ILs) used in industry, an efficient recovery method is needed. In this study, the effectiveness of a simultaneous concentration and recovery method was investigated for 1-ethyl-3-methylimidazolium chloride ([Emim]Cl), an IL that was recovered using electrodialysis (ED). The optimal operational parameters for electrodialytic recovery were determined empirically. The variables that were investigated included the concentration of IL, applied voltage, linear flow velocity and the diluate-to-concentrate volume ratio. The recovery of [Emim]Cl, the concentration degree, the [Emim]Cl flux across membranes, the current efficiency, as well as the energy consumption were determined. The results of the experiments confirmed that [Emim]Cl concentration and recovery can be achieved using ED. The highest ED efficiency was obtained when a 2 V electric potential per one membrane pair was applied, using a 2 cm/s linear flow velocity, and by adjusting to 0.2 M IL in the feed solution. By using ED, a 2.35-fold concentration of [Emim]Cl with a recovery of 90.4% could be achieved when the diluate-to-concentrate volume ratio was 2. On the other hand, a 3.35-fold concentration of [Emim]Cl with a recovery of 81.7% could be obtained when the diluate-to-concentrate volume ratio was increased to 5.


2021 ◽  
pp. 014459872110571
Author(s):  
Zhigang Du ◽  
Yawen Tao ◽  
Xiaodong Zhang ◽  
Wuxiu Ding ◽  
Qiang Huang

Coalbed methane (CBM) resources cannot be efficiently explored and exploited without a robust understanding of the permeability of fracture-size heterogeneities in coal. In this study, two sister coal samples were imparted with pre-developed cleat and connected fractures, and the permeability of the coal samples was measured under different conditions of controlled confining and gas pressures. Furthermore, the implications of the results for CBM exploration and exploitation were discussed. The permeability of coal with cleat development ranged from 0.001–0.01 mD, indicating ultra-low permeability coal. The gas migration in this coal changed from a linear flow to a non-linear flow, with the increase in gas pressure (>1 MPa). Thus, the permeability of the coal initially increased and then decreased. However, the Klinkenberg effect does not exist in this ultralow-permeability coal. For the coal sample with connected fracture, permeability ranged from 0.1–10 mD, which is larger by hundred orders of magnitude than that of the sample with cleat. For this coal, with a decrease in gas pressure (<1 MPa), the Klinkenberg effect significantly increased the permeability of the coal. With an increase in the applied confining pressure, both the Klinkenberg coefficient and permeability of the coal presented a decreasing trend. It is suggested that field fracture investigation is a prerequisite and indispensable step for successful CBM production. The coal beds that cleat network is well conductive to the connected fracture can be an improved target area for CBM production. During CBM production, a variety of flow regimes are available owing to the decrease in CBM reservoir pressure. In particular, under the low CBM reservoir pressure and low in situ geo-stress conditions, the gas migration in the CBM reservoir with connected facture development exhibits remarkable free-molecular flow. Thus, the reservoir permeability and predicted CBM production will be enhanced.


2021 ◽  
Vol 1 (1) ◽  
pp. 58-70
Author(s):  
Maswood Akhter

 My aim in this paper is to offer a critical discussion on certain linguistic and stylistic aspects in the fictional pieces by Sunetra Gupta, an important Bengali diaspora author based in Oxford. In her debut novel, ‘Memories of Rain’ as well as in her others, Gupta effortlessly intersperses prose with poetry; her writing is complex, fusing stream of sensuous poetic imagery with stream of consciousness. A powerful delivery of interior monologue, figurative language, and continuous time-shifts invites the novelist’s comparison with Virginia Woolf. Memory becomes a vital player in many of her novels, be it Memories of Rain, Moonlight into Marzipan or So Good in Black. Giving it the centre stage automatically leads her towards an experimental narrative technique, since memory – a highly subjective and elastic category blending fantasy with the past – keeps intervening in the linear flow of the plot. Interestingly, her stream-of-consciousness technique transforms language and punctuation marks from normative linguistic symbols into poignant emotional tools. By exploring the limits of ambiguity in language, as I argue here, Gupta has evolved a personal literary idiom in which prose is pushed into a territory formerly accessible only to poetry. The issue of intertextuality is also discussed, with special reference to Memories of Rain where the influence and interplay of diverse texts provide the novelists context and meaning, and shape its narrative and characters.


Sign in / Sign up

Export Citation Format

Share Document