piezoelectric impedance
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 189
Author(s):  
Sihui Jia ◽  
Mingzhang Luo

Viscous dampers are a type of seismic damping equipment widely used in high-rise buildings and bridges. However, the viscosity of the damping fluid inside the viscous damper will change over time during its use, which significantly reduces the seismic performance of the viscous damper. Hence, it is necessary to monitor the viscosity of the fluid inside the damper over its service life. In this paper, a damping fluid viscosity monitoring method based on wireless impedance measurement technology is proposed. A piezoelectric sensor is installed in a damper cylinder specimen, and the viscosity of the damping fluid is determined by measuring the piezoelectric impedance value of the sensor. In this study, 10 samples of damping fluids with different viscosities are tested. In order to quantitatively correlate damping fluid viscosity and electrical impedance, a viscosity index (VI) based on the root mean square deviation (RMSD) is proposed. The experimental results show that the variation of the real part in the impedance signal can qualitatively determine the damping fluid viscosity while the proposed VI can effectively and quantitatively identify the damping fluid viscosity.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Quan Zhai ◽  
Jicheng Zhang ◽  
Guofeng Du ◽  
Yulong Rao ◽  
Xiaoyu Liu

Purpose At present, piezoelectric impedance technology has been used in the study of wood damage monitoring. However, little effort has been made in the research on the application of piezoelectric impedance system to monitor the change of wood moisture content (MC). The monitoring method of wood MC is used by piezoelectric impedance technique in this study. Design/methodology/approach One piezoceramic transducer is bonded to the surface of wood specimens. The MC of the wood specimens increases gradually from 0% to 60% with 10% increments; the mechanical impedance of the wood specimen will change, and the change in the mechanical impedance of the structure is reflected by monitoring the change in the electrical impedance of lead zirconate titanate. Therefore, this paper investigates the relationship between wood MC change and piezoelectric impedance change to verify the feasibility of the piezoelectric impedance method for monitoring wood MC change. Findings The experiment verified that the real part of impedance of the wood increased with the increase of wood MC. Besides, the damage index root mean square deviation is introduced to quantify the damage degree of wood under different MC. At the same time, the feasibility and validity of this experiment were verified from the side by finite element simulation. Finally, MC monitoring by piezoelectric impedance technique is feasible. Originality/value To the best of the authors’ knowledge, this work is the first to apply piezoelectric ceramics to the monitoring of wood MC, which provides a theoretical basis for the follow-up study of a wide range of wood components and even wood structure MC changes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanchao Yue ◽  
Jingjing Tian ◽  
Yongtao Bai ◽  
Kai Jia ◽  
Jian He ◽  
...  

Wind turbines are one of the key systems in wind energy development. The wind tower supporting the whole wind turbine is a towering structure, which has been affected by installation, transportation, environment, and other factors. Furthermore, it is prone to experience other quality problems that would be difficult to detect for wind turbine towers. Therefore, the key to maintain the wind tower structure and to ensure the normal operation of a wind turbine is to carry out comprehensive and detailed detection and monitoring studies during its service stage. This paper sorted out several common quality problems including structural damage, deformation, flange bolts loosening, and corrosion of wind tower and relevant research on the detection and monitoring of these quality problems. In addition, some nondestructive testing technologies are introduced, including the ultrasonic phased array, time of flight diffraction, magnetic memory, acoustic emission, fiber Bragg grating and piezoelectric impedance, and applications in wind turbine towers.


2020 ◽  
Vol 10 (13) ◽  
pp. 4648 ◽  
Author(s):  
Tao Wang ◽  
Bohai Tan ◽  
Mingge Lu ◽  
Zheng Zhang ◽  
Guangtao Lu

To detect small cracks in plate like structures, the high frequency characteristics of local dynamics were studied with the piezoelectric electro-mechanical impedance (EMI) method, and damages were monitored by the changes of the EMI. The finite element simulation model of EMI was established, and numerical analysis was conducted. The simulation results indicated that the peak frequency of the piezoelectric admittance signal is a certain order resonance frequency of the structure, and the piezoelectric impedance method could effectively detect the dynamic characteristics of the structure. The piezoelectric admittance simulation and experimental study of aluminum beams with different crack sizes were performed. Simulation and experimental results revealed that the peak admittance frequency decreases with the increase of crack size, and the higher resonance frequency is more sensitive to the small-scale damage. The proposed method has good repeatability and strong signal-to-noise ratio to monitor the occurrence and development of small-scale crack damage, and it has an important application prospect.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yabin Liang ◽  
Zhicheng Ye ◽  
Qian Feng

Concrete columns are critical in supporting the weight of an entire structural frame and also play a key role in force transferring among structural members. Therefore, integrity of the columns, especially their axial load bearing capacity, directly affects the stability and safety of the entire structure. In this study, a wearable smart hoop is designed to monitor the axial load of the concrete columns. The smart hoop measures the shift in impedance frequency of its integrated piezoelectric transducer and correlates the frequency to the structural state of the column. In order to validate the feasibility of the smart hoop, an experiment on two concrete columns with different dimensions is carried out. The smart hoop is installed on each column. Then, an increasing axial load was applied onto the specimen, and the admittance of the PZT patch is acquired under different load levels by using an impedance analyzer. Finally, frequencies corresponding to the peak and trough in the susceptance of the admittance signal are collected as the monitoring index to estimate the axial load variation on the specimen. The experimental results demonstrated a downward shift in frequency corresponding to an increase of axial load. The results validate the feasibility of the wearable smart hoop in monitoring axial load for concrete columns and show potential for retrofit on existing columns.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 10
Author(s):  
Pedro Oliveira Junior ◽  
Paulo Aguiar ◽  
Rodrigo Ruzzi ◽  
Salvatore Conte ◽  
Martin Viera ◽  
...  

The purpose of the present study is to monitor tool condition in a grinding operation through the electromechanical impedance (EMI) using wavelet analysis. To achieve this, a dressing experiment was conducted on an industrial aluminum oxide grinding wheel by fixing a stationary single-point diamond tool. The proposed approach was verified experimentally at various dressing tool conditions. The signals obtained from an EMI data acquisition system, composed of a piezoelectric diaphragm transducer attached to the tool holder, were processed using discrete wavelet transform. The approximation and detail coefficients obtained from wavelet decomposition were used to estimate tool condition using the correlation coefficient deviation metric (CCDM). The results show excellent performance in tool condition monitoring by the proposed technique, which effectively contributes to modern machine tool automation.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 621 ◽  
Author(s):  
Wongi S. Na ◽  
Jongdae Baek

Detecting the depth and size of debonding in composite structures is essential for assessing structural safety as it can weaken the structure possibly leading to a failure. As composite materials are used in various fields up to date including aircrafts and bridges, inspections are carried out to maintain structural integrity. Although many inspection methods exist for detection damage of composites, most of the techniques require trained experts or a large equipment that can be time consuming. In this study, the possibility of using the piezoelectric material-based non-destructive method known as the electromechanical impedance (EMI) technique is used to identify the depth of debonding damage of glass epoxy laminates. Laminates with various thicknesses were prepared and tested to seek for the possibility of using the EMI technique for identifying the depth of debonding. Results show promising outcome for bringing the EMI technique a step closer for commercialization.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 519
Author(s):  
Weihua Shi ◽  
Ying Chen ◽  
Peng Liu ◽  
Dongyu Xu

An embedded piezoelectric transducer was developed for monitoring the corrosion process of reinforcement bars in concrete based on the piezoelectric impedance technique. The electrochemical method was employed to accelerate the corrosion process of the reinforcement bar with relative mass loss of 0.5–10%, and the resistance spectra of the piezoelectric transducers were investigated to assess the corrosion process. The results show that the corrosion process of the reinforcement bar has significant influence on the resistance spectra of the piezoelectric transducers. Statistical parameters were used to intuitively evaluate the corrosion evolution based on variations of the resistance spectra. The corrosion process of reinforcement bar in concrete can be classified into three periods; that is, the initial period when the relative mass loss is less than 2%, the developing period at a relative mass loss of 2–4%, and the rapid corrosion period when the relative mass loss is higher than 4%.


Sign in / Sign up

Export Citation Format

Share Document