carbon stores
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 26)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
pp. 146-159
Author(s):  
Hannah L. Mossman ◽  
Martin J.P. Sullivan ◽  
Rachel M. Dunk ◽  
Stuart Rae ◽  
Robert Sparkes ◽  
...  

2021 ◽  
Author(s):  
Martin Taubert ◽  
Will A. Overholt ◽  
Beatrix M. Heinze ◽  
Georgette Azemtsop Matanfack ◽  
Rola Houhou ◽  
...  

AbstractCurrent understanding of organic carbon inputs into ecosystems lacking photosynthetic primary production is predicated on data and inferences derived almost entirely from metagenomic analyses. The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 fixation is an integral component of subsurface trophic webs. To understand the impact of autotrophically fixed carbon, the flux of CO2-derived carbon through various populations of subsurface microbiota must first be resolved, both quantitatively and temporally. Here we implement novel Stable Isotope Cluster Analysis to render a time-resolved and quantitative evaluation of 13CO2-derived carbon flow through a groundwater community in microcosms stimulated with reduced sulfur compounds. We demonstrate that mixotrophs, not strict autotrophs, were the most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the production and remineralization of organic carbon. Their activity facilitated the replacement of 43% and 80% of total microbial carbon stores in the groundwater microcosms with 13C in just 21 and 70 days, respectively. The mixotrophs employed different strategies for satisfying their carbon requirements by balancing CO2 fixation and uptake of available organic compounds. These different strategies might provide fitness under nutrient-limited conditions, explaining the great abundances of mixotrophs in other oligotrophic habitats, such as the upper ocean and boreal lakes.


2021 ◽  
Vol 18 (19) ◽  
pp. 5491-5511
Author(s):  
Tanya J. R. Lippmann ◽  
Michiel H. in 't Zandt ◽  
Nathalie N. L. Van der Putten ◽  
Freek S. Busschers ◽  
Marc P. Hijma ◽  
...  

Abstract. Northern latitude peatlands act as important carbon sources and sinks, but little is known about the greenhouse gas (GHG) budgets of peatlands that were submerged beneath the North Sea during the last glacial–interglacial transition. We found that whilst peat formation was diachronous, commencing between 13 680 and 8360 calibrated years before the present, stratigraphic layering and local vegetation succession were consistent across a large study area. Large carbon stores were measured. In situ methane (CH4) concentrations of sediment pore waters were widespread but low at most sites, with the exception of two locations. Incubation experiments in the laboratory revealed molecular signatures of methanogenic archaea, with strong increases in rates of activity upon methylated substrate amendment. Remarkably, methanotrophic activity and the respective diagnostic molecular signatures could not be detected. Heterotrophic Bathyarchaeota dominated the archaeal communities, and bacterial populations were dominated by candidate phylum JS1 bacteria. In the absence of active methanogenic microorganisms, we conclude that these sediment harbour low concentrations of widespread millennia-old CH4. The presence of large widespread stores of carbon and in situ methanogenic microorganisms, in the absence of methanotrophic microorganisms, holds the potential for microbial CH4 production if catalysed by a change in environmental conditions.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101742118
Author(s):  
Ype van der Velde ◽  
Arnaud J. A. M. Temme ◽  
Jelmer J. Nijp ◽  
Maarten C. Braakhekke ◽  
George A. K. van Voorn ◽  
...  

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands. Here, we present a dynamic simulation model constrained and validated by a wide set of observations to quantify how feedbacks in water and carbon cycling control resilience of both peatlands and forests in northern landscapes. Our results show that 34% of Europe (area) has a climate that can currently sustain existing rainwater-fed peatlands (raised bogs). However, raised bog initiation and restoration by water conservation measures after the original peat soil has disappeared is only possible in 10% of Europe where the climate allows raised bogs to initiate and outcompete forests. Moreover, in another 10% of Europe, existing raised bogs (concerning ∼20% of the European raised bogs) are already affected by ongoing climate change. Here, forests may overgrow peatlands, which could potentially release in the order of 4% (∼24 Pg carbon) of the European soil organic carbon pool. Our study demonstrates quantitatively that preserving and restoring peatlands requires looking beyond peatland-specific processes and taking into account wider landscape-scale feedbacks with forest ecosystems.


2021 ◽  
Vol 4 ◽  
pp. 100072
Author(s):  
N. Bijayalaxmi Devi ◽  
Nima T. Lepcha ◽  
Siddarth S. Mahalik ◽  
Denish Dutta ◽  
Benrithung L. Tsanglao

2021 ◽  
Author(s):  
Graham Epstein ◽  
Julie P Hawkins ◽  
Catrin R Norris ◽  
Callum M Roberts

Subtidal marine sediments are one of the planet's primary carbon stores and strongly influence the oceanic sink for atmospheric CO2. By far the most pervasive human activity occurring on the seabed is bottom trawling and dredging for fish and shellfish. A global first-order estimate suggested mobile demersal fishing activities may cause 160-400 Mt of organic carbon (OC) to be remineralised annually from seabed sediment carbon stores. There are, however, many uncertainties in this calculation. Here, we discuss the potential drivers of change in seabed OC stores due to mobile demersal fishing activities and conduct a systematic review, synthesising studies where this interaction has been directly investigated. Mobile demersal fishing would be expected to reduce OC in seabed stores, albeit with site-specific variability. Reductions would occur due to lower production of flora and fauna, the loss of fine flocculent material, increased sediment resuspension, mixing and transport, and increased oxygen exposure. This would be offset to some extent by reduced faunal bioturbation and respiration, increased off-shelf transport and increases in primary production from the resuspension of nutrients. Studies which directly investigated the impact of demersal fishing on OC stocks had mixed results. A finding of no significant effect was reported in 51% of 59 experimental contrasts; 41% reported lower OC due to fishing activities, with 8% reporting higher OC. In relation to remineralisation rates within the seabed, 14 experimental contrasts reported that demersal fishing activities decreased remineralisation, with four reporting higher remineralisation rates. The direction of effects was related to sediment type, impact duration, study design and local hydrography. More evidence is urgently needed to accurately quantify the impact of anthropogenic physical disturbance on seabed carbon in different environmental settings, and incorporate full evidence-based carbon considerations into global seabed management.


2021 ◽  
Author(s):  
Lindsay Dreiss ◽  
Jacob Malcom

AbstractAddressing the current biodiversity crisis will require transformative changes to social, political, and economic structures. One science-based recommendation is protecting 30% of the Earth’s terrestrial and marine systems by 2030, “30×30”. Here we analyze the current spatial patterns of imperiled species biodiversity and carbon stores in the U.S. relative to protected areas to help conservationists and decision makers understand the starting point on the path to achieving 30×30. Multi-scale analyses demonstrate that 30×30 is numerically achievable nationally, but high spatial heterogeneity highlights the need for tailored approaches from a mix of authorities at federal, regional, and state scales. Critically, current land protections rarely overlap with areas essential for conserving imperiled species biodiversity and mitigating climate change. We discuss this baseline relative to key policy considerations for making practical, substantive progress toward the goal.


2021 ◽  
Author(s):  
Chantelle Burton ◽  
Douglas Kelley ◽  
Chris Jones ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
...  

<p>Unprecedented fire events in recent years are leading to a demand for improved understanding of how climate change is already affecting fires, and how this could change in the future. Increased fire activity in South America is one of the most concerning of all the recent events, given the potential impacts on local health and the global climate from loss of large carbon stores under future environmental change. However, due to the complexity of interactions and feedbacks, and lack of complete representation of fire biogeochemistry in many climate models, there is currently low agreement on whether climate change will cause fires to become more or less frequent in the future, and what impact this will have on ecosystems. Here we use the latest climate simulations from the UK Earth System Model UKESM1 to understand feedbacks in fire, dynamic vegetation, and terrestrial carbon stores using the fire-enabled land surface model JULES-INFERNO, taking into account future scenarios of change in emissions and land use. Based on evaluation of the modelling framework performance for the present day, we address the specific policy-relevant question: how much fire-induced carbon loss will there be over South America at different global warming levels in the future? We find that burned area and fire emissions are projected to increase in the future due to hotter and drier conditions, which leads to large reductions in carbon storage especially when combined with increasing land-use conversion. The model simulates a 38% loss of carbon at 4°C under the highest emission scenario, which could be reduced to 8% if temperature rise is limited to 1.5°C. Our results provide a critical assessment of ecosystem resilience under future climate change, and could inform the way fire and land-use is managed in the future to reduce the most deleterious impacts of climate change.</p>


2021 ◽  
pp. 335-371
Author(s):  
Hans-Walter Heldt ◽  
Birgit Piechulla
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document