toxic protein
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 15 ◽  
Author(s):  
Nguyen Thanh Nhu ◽  
Shu-Yun Xiao ◽  
Yijie Liu ◽  
V. Bharath Kumar ◽  
Zhen-Yang Cui ◽  
...  

Neural mitochondrial dysfunction, neural oxidative stress, chronic neuroinflammation, toxic protein accumulation, and neural apoptosis are common causes of neurodegeneration. Elamipretide, a small mitochondrially-targeted tetrapeptide, exhibits therapeutic effects and safety in several mitochondria-related diseases. In neurodegeneration, extensive studies have shown that elamipretide enhanced mitochondrial respiration, activated neural mitochondrial biogenesis via mitochondrial biogenesis regulators (PCG-1α and TFAM) and the translocate factors (TOM-20), enhanced mitochondrial fusion (MNF-1, MNF-2, and OPA1), inhibited mitochondrial fission (Fis-1 and Drp-1), as well as increased mitophagy (autophagy of mitochondria). In addition, elamipretide has been shown to attenuate neural oxidative stress (hydrogen peroxide, lipid peroxidation, and ROS), neuroinflammation (TNF, IL-6, COX-2, iNOS, NLRP3, cleaved caspase-1, IL-1β, and IL-18), and toxic protein accumulation (Aβ). Consequently, elamipretide could prevent neural apoptosis (cytochrome c, Bax, caspase 9, and caspase 3) and enhance neural pro-survival (Bcl2, BDNF, and TrkB) in neurodegeneration. These findings suggest that elamipretide may prevent the progressive development of neurodegenerative diseases via enhancing mitochondrial respiration, mitochondrial biogenesis, mitochondrial fusion, and neural pro-survival pathway, as well as inhibiting mitochondrial fission, oxidative stress, neuroinflammation, toxic protein accumulation, and neural apoptosis. Elamipretide or mitochondrially-targeted peptide might be a targeted agent to attenuate neurodegenerative progression.


2022 ◽  
Author(s):  
Prama Setia Putra ◽  
Hadrien Oliveri ◽  
Travis B Thompson ◽  
Alain Goriely

Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2247
Author(s):  
Yi Zhang ◽  
Jiayu Gu ◽  
Qiming Sun

Stress granules are conserved cytosolic ribonucleoprotein (RNP) compartments that undergo dynamic assembly and disassembly by phase separation in response to stressful conditions. Gene mutations may lead to aberrant phase separation of stress granules eliciting irreversible protein aggregations. A selective autophagy pathway called aggrephagy may partially alleviate the cytotoxicity mediated by these protein aggregates. Cells must perceive when and where the stress granules are transformed into toxic protein aggregates to initiate autophagosomal engulfment for subsequent autolysosomal degradation, therefore, maintaining cellular homeostasis. Indeed, defective aggrephagy has been causally linked to various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this review, we discuss stress granules at the intersection of autophagy and ALS pathogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Harry O. Orlans ◽  
Michelle E. McClements ◽  
Alun R. Barnard ◽  
Cristina Martinez-Fernandez de la Camara ◽  
Robert E. MacLaren

AbstractRhodopsin (RHO) gene mutations are a common cause of autosomal dominant retinitis pigmentosa (ADRP). The need to suppress toxic protein expression together with mutational heterogeneity pose challenges for treatment development. Mirtrons are atypical RNA interference effectors that are spliced from transcripts as short introns. Here, we develop a novel mirtron-based knockdown/replacement gene therapy for the mutation-independent treatment of RHO-related ADRP, and demonstrate efficacy in a relevant mammalian model. Splicing and potency of rhodopsin-targeting candidate mirtrons are initially determined, and a mirtron-resistant codon-modified version of the rhodopsin coding sequence is validated in vitro. These elements are then combined within a single adeno-associated virus (AAV) and delivered subretinally in a RhoP23H knock-in mouse model of ADRP. This results in significant mouse-to-human rhodopsin RNA replacement and is associated with a slowing of retinal degeneration. This provides proof of principle that synthetic mirtrons delivered by AAV are capable of reducing disease severity in vivo.


2021 ◽  
Author(s):  
Margarita Dinamarca Ceballos ◽  
Laura Colombo ◽  
Urszula Brykczynska ◽  
Amandine Grimm ◽  
Efthalia Natalia Tousiaki ◽  
...  

Skeletal muscle dysfunction, wasting and synaptic pathology is a hallmark of Huntingtons disease (HD). Similar as for the nervous system the pathological lesions and clinical symptoms progressively worsen with disease coarse. Cell-to-cell transmission of toxic mutant huntingtin (mHTT) has been shown to occur and could be a potential explanation for the progressive accumulation of pathological lesions and clinical symptoms in time. However, the mechanism and contribution of mHTT cell-to-cell transmission to pathology in an environment of ubiquitous expression of the mutant protein is not well understood. Here, we show that the HD-associated mHTT exon 1 (mHTTEx1) is transmitted from human induced pluripotent stem cell- (hiPSC-) derived motor neurons (MNs) to isogenic hiPSC-derived myotubes across functionally active neuromuscular junctions (NMJ) and in vivo in wild-type mice from the M1 motor cortex to spinal MNs and skeletal muscles. Increased synaptic connectivity and activity enhances transmission. Also, our data reveals that transmission happens prior to aggregate formation and that aggregation occurs progressively with continuous transmission across weeks at the myotube surface. Furthermore, we provide evidence that mHTTEx1 derived from MNs causes defragmentation of mitochondria and exacerbates nuclear aggregation, the latter in the presence of myotube autonomous mHTTEx1. Finally, we find that mHTTEx1 transmission results in decreased myotube contractions, in contrast myotube autonomous expression causes a hyperexcitable-like phenotype. Altogether, our data suggests that mHTTEx1 neuromuscular transmission contributes to skeletal muscle dysfunction in HD, via continuous transmission of the toxic protein already at early preclinical stages of HD and thereby contributes to an increasing accumulation of toxic protein in skeletal muscle, eventually leading to a highly-selective phenotype resulting in a decline of skeletal muscle function. Since multiple studies support a role of synaptic transmission of diverse misfolded proteins, including tau in Alzheimers, alpha-synuclein in Parkinsons, mHTT in HD, tdp-43 in Amyotrophic lateral sclerosis and frontotemporal lobar dementia, in the central nervous system, this process likely represents a common synaptic-linked pathobiological pathway for most neurodegenerative protein misfolding diseases.


2021 ◽  
Vol 14 (5) ◽  
Author(s):  
Charlotte M. Fare ◽  
James Shorter

ABSTRACT Neurodegenerative diseases and other protein-misfolding disorders represent a longstanding biomedical challenge, and effective therapies remain largely elusive. This failure is due, in part, to the recalcitrant and diverse nature of misfolded protein conformers. Recent work has uncovered that many aggregation-prone proteins can also undergo liquid–liquid phase separation, a process by which macromolecules self-associate to form dense condensates with liquid properties that are compositionally distinct from the bulk cellular milieu. Efforts to combat diseases caused by toxic protein states focus on exploiting or enhancing the proteostasis machinery to prevent and reverse pathological protein conformations. Here, we discuss recent advances in elucidating and engineering therapeutic agents to combat the diverse aberrant protein states that underlie protein-misfolding disorders.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael J. Rigby ◽  
Alexis J. Lawton ◽  
Gulpreet Kaur ◽  
Varuna C. Banduseela ◽  
William E. Kamm ◽  
...  

AbstractNε-lysine acetylation in the ER lumen is a recently discovered quality control mechanism that ensures proteostasis within the secretory pathway. The acetyltransferase reaction is carried out by two type-II membrane proteins, ATase1/NAT8B and ATase2/NAT8. Prior studies have shown that reducing ER acetylation can induce reticulophagy, increase ER turnover, and alleviate proteotoxic states. Here, we report the generation of Atase1−/− and Atase2−/− mice and show that these two ER-based acetyltransferases play different roles in the regulation of reticulophagy and macroautophagy. Importantly, knockout of Atase1 alone results in activation of reticulophagy and rescue of the proteotoxic state associated with Alzheimer’s disease. Furthermore, loss of Atase1 or Atase2 results in widespread adaptive changes in the cell acetylome and acetyl-CoA metabolism. Overall, our study supports a divergent role of Atase1 and Atase2 in cellular biology, emphasizing ATase1 as a valid translational target for diseases characterized by toxic protein aggregation in the secretory pathway.


Author(s):  
Anita Pras ◽  
Ellen A. A. Nollen

Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.


2021 ◽  
Author(s):  
Swadesh Pal ◽  
Roderick Melnik

Neurodegenerative diseases are frequently associated with aggregation and propagation of toxic proteins. In particular, it is well known that along with amyloid-beta, the tau protein is also driving Alzheimer's disease. Multiscale reaction-diffusion models can assist in our better understanding of the evolution of the disease. We have modified the heterodimer model in such a way that it can now capture some of critical characteristics of this evolution such as the conversion time from healthy to toxic proteins. We have analyzed the modified model theoretically and validated the theoretical findings with numerical simulations.


2021 ◽  
Vol 22 (5) ◽  
pp. 2241
Author(s):  
Marc Dauplais ◽  
Katarzyna Bierla ◽  
Coralie Maizeray ◽  
Roxane Lestini ◽  
Ryszard Lobinski ◽  
...  

Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in Saccharomyces cerevisiae to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the reactions between glutathione (GSH) and these MeSeH precursors indicates that in the conditions that prevail in vivo, GSH can reduce the major part of MSeA or dimethyldiselenide into MeSeH. MeSeH can also be enzymatically produced by glutathione reductase or thioredoxin/thioredoxin reductase. Studies on the toxicity of MeSeH precursors (MSeA, dimethyldiselenide or a mixture of MSeA and GSH) in S.cerevisiae revealed that cytotoxicity and selenomethionine content were severely reduced in a met17 mutant devoid of O-acetylhomoserine sulfhydrylase. This suggests conversion of MeSeH into selenomethionine by this enzyme. Protein aggregation was observed in wild-type but not in met17 cells. Altogether, our findings support the view that MeSeH is toxic in S. cerevisiae because it is metabolized into selenomethionine which, in turn, induces toxic protein aggregation.


Sign in / Sign up

Export Citation Format

Share Document