solid fat
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 48)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Xiaochen Wang ◽  
Da Ma ◽  
Yingwei Liu ◽  
Ying Wang ◽  
Chaoying Qiu ◽  
...  

Oleogelation is an efficient way to structure oil and reduce saturated fatty acids of lipid products. Multi-component gels are of particularly interest attributed to the ability to tune gel properties by alteration of the component proportions. In this study, monoacylglycerol (MAG) and diacylglycerol (DAG) are used as gelator mixture and the influence of the ratio of these two crystalline particles on the characteristics of oleogels was investigated. The crystallization and melting behavior, solid fat content (SFC), crystal morphology, polymorphism and mechanical properties of the oleogels were characterized. The oleogels with higher gelator level displayed higher oil binding ability and shorter crystal formation time. The oleogels with higher MAG ratio exhibited more blade-like crystals, and the mixed oleogels with MAG: DAG of 3:7 and 5:5 showed altered crystal morphology with finer crystal size and reduced crystallization enthalpies possibly due to the increased nucleation seeds promoted by MAG. The oleogels with high MAG level showed lower equilibrium SFC during isothermal crystallization but faster crystallization rate, higher hardness and elasticity. Therefore, by changing the ratio of DAG with MAG, the crystallization profile and rheological properties of oleogels can be tailored and used as traditional solid fat substitutes in lipid-based products.


Author(s):  
Hong-Sik Hwang ◽  
Sanghoon Kim ◽  
Jill Winkler-Moser ◽  
S. Lee ◽  
Sean Liu

Cold-pressed hempseed oil (HSO) is known to have many health benefits due to many phytochemicals and high polyunsaturated fatty acids content. In this study, HSO oleogels were prepared with 3, 5, and 7% natural waxes including sunflower wax (SW), rice bran wax (RBW), beeswax, and candelilla wax to evaluate their potential as solid fat replacements in margarines and spreads. Firmness, crystal structures, and melting properties of these oleogels were evaluated. In general, wax-based HSO oleogels except for RBW-HSO oleogels had lower firmness and weaker crystal network than the corresponding soybean oil (SBO) oleogels. In contrast, RBW-HSO oleogels had similar firmness, comparable or stronger crystal network, and higher melting and crystallization enthalpies compared to those of SBO oleogels. After removing polar compounds from HSO, waxes except for RBW provided oleogels with greater firmness, higher melting and crystallization enthalpies, and stronger crystal network. Therefore, it was concluded that polar compounds negatively affected the physical properties of wax-HSO oleogels but not those of RBW-HSO oleogels. Margarine samples were prepared with SW- and RBW-HSO oleogels, and their firmness and melting properties were examined. The firmness of these margarines indicated that wax-HSO oleogels may achieve the firmness of commercial spreads with less than 3% wax while the firmness of stick margarines cannot be achieved even with 7% wax. Although the properties of wax-HSO oleogels should be further improved, they showed potential as solid fat replacements in margarines and spreads.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3059
Author(s):  
Sohui Jeong ◽  
Suyoung Lee ◽  
Imkyung Oh

Oleogelation has recently received a great deal of attention in the food industry as a novel alternative technology that physically converts liquid oil into semi-solid gel. Since the functional characteristics of oleogels are dependent on the gelators or bioactive compounds incorporated, this study was undertaken to evaluate the rheological properties and oxidative stability of candelilla wax oleogels fortified with glycerol monostearate (GMS) and β-carotene, and also to investigate their applications to muffin as a shortening replacer. The interaction between candelilla wax and GMS contributed to strengthening the oleogel structure. The oleogels with β-carotene showed the lowest peroxide values than the other samples. The muffins prepared with oleogels for shortening had greater specific gravity and harder texture, but there was no significant difference in the specific volume between the shortening and oleogel samples with GMS. In addition, muffins with β-carotene oleogels showed the highest oxidative stability. Therefore, this study indicated that the incorporation of β-carotene and GMS in oleogels positively affected the storage stability of muffin.


Author(s):  
Marco Grossi ◽  
Enrico Valli ◽  
Virginia Teresa Glicerina ◽  
Pietro Rocculi ◽  
Tullia Gallina Toschi ◽  
...  

2021 ◽  
Vol 941 (1) ◽  
pp. 012033
Author(s):  
Yu V Frolova ◽  
R V Sobolev ◽  
A A Kochetkova

Abstract The article presents a comparative analysis of the properties of dough and cookies based on oleogels structured with various substances. Oleogels based on beeswax and its fractions were used as an alternative to solid fat in cookies. We found out that the use of separate beeswax fractions in oleogels makes it possible to obtain dough with different rheological characteristics. It was revealed that there is no regularity in the change in the rheological properties of cookies from the properties of the dough and oleogels. Analysis of the organoleptic profile of the cookie samples showed high values. This fact indicates the acceptability of using oleogels based on individual wax fractions in the biscuits cookies. The results obtained indicate the potential of using oleogels based on beeswax fractions in cookies as an alternative to solid fats.


2021 ◽  
Vol 72 (3) ◽  
pp. e420
Author(s):  
T.S. Tavares ◽  
K.T. Magalhães ◽  
N.D. Lorenzo ◽  
C.A. Nunes

The Jerivá (Syagrus romanzoffiana) kernel oil (JKO) has a pleasant coconut-like smell, with about 33% lauric acid and 28% oleic acid. The oil also contains bioactive compounds, such as phenolics, carotenoids, and tocopherols. JKO has a solid consistency at low temperatures, but has a low melting point and low solid content at room temperature. Thus, this work aimed to evaluate the thermal properties related to crystallization and fusion, as well as the chemical and oxidative characteristics of JKO fractions, olein and stearin, obtained from dry and solvent fractionation. In general, stearins had higher crystallization and melting temperatures, and higher solid fat content, unlike oleins, which may be associated with the concentration of high melting triglycerides in the stearins. No statistically significant difference was found for fatty acid profile or oxidative stability of the fractions. The type of fractionation influenced the chemical and thermal properties of JKO fractions. The solvent process promoted the most relevant differentiation of fractions. An olein was obtained with 7% less solid fat at 25 °C which remained visually liquid at 2 °C below the oil, as well as a stearin with 17% more solid fat at 25 °C which remained visually solid at 3 °C above the oil.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Shaun Yong Jie Sim ◽  
◽  
Kah Xuan Wong ◽  
Christiani Jeyakuma Henry ◽  
◽  
...  

Introduction: Pineapple tarts are a commonly consumed Southeast Asian pastry made using solid fats like butter and palm shortening. These solid fats predominantly contain high amounts of saturated fats which have been implicated in negative health effects. However, solid fats impart important textural properties in pastry formation and is not easy to replace. To overcome this challenge, a concept to enhance the nutritional value whilst maintaining the textural properties of pineapple tart pastry formed the basis of this study. Methods: This short study explored the use of “healthy” avocado-olive oil-based oleogels structured with food-grade ethylcellulose (EC), monoglycerides (MG) or its combination (EC-MG) as solid fat replacements to butter and palm shortening. The textural properties of the pastry dough and tart were determined using a texture analyser, while the nutritional content of the pastries was compared. Results: The firmness of pastry dough decreased in the order: EC >> EC-MG > butter ~ MG ~ shortening, while tart hardness decreased: EC > shortening ~ butter > MG > EC-MG. The combination EC-MG oleogel had positive effects on the textural properties by improving the dough workability and reducing the tart hardness compared to EC. Remarkably, the oleogel tart pastries had up to 70% less saturated fat compared to the butter or palm shortening pastries. Conclusion: This study confirms the ability to create healthier pastries whilst maintaining its texture.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4586
Author(s):  
Jung-Ah Shin ◽  
Yea-Jin Hong ◽  
Ki-Teak Lee

We developed an alternative whipping cream fat using shea butter but with low saturation. Enriched stearic-oleic-stearic (SOS) solid fat was obtained from shea butter via solvent fractionation. Acyl migration reactant, which mainly contains asymmetric SSO triacylglycerol (TAG), was prepared through enzymatic acyl migration to obtain the creaming quality derived from the β’-crystal form. Through enzymatic acyl migration, we obtained a 3.4-fold higher content of saturated-saturated-unsaturated (SSU) TAG than saturated-unsaturated-saturated (SUS) TAG. The acyl migration reactant was refined to obtain refined acyl migration reactant (RAMR). An alternative fat product was prepared by blending RAMR and hydrogenated palm kernel oil (HPKO) at a ratio of 4:6 (w/w). The melting points, solid fat index (SFI), and melting curves of the alternative products were similar to those of commercial whipping cream fat. The alternative fat had a content of total unsaturated fatty acids 20% higher than that of HPKO. The atherogenic index (AI) of alternative fat was 3.61, much lower than those of whipping cream fat (14.59) and HPKO (1220.3), because of its low atherogenic fatty acid content and high total unsaturated fatty acids. The polymorphic crystal form determined by X-ray diffraction spectroscopy showed that the β’-crystal form was predominant. Therefore, the alternative fat is comparable with whipping cream that requires creaming quality, and has a reduced saturated fat content.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3798
Author(s):  
Dennis Schab ◽  
Susann Zahn ◽  
Harald Rohm

Cutting speed plays a crucial role for the behavior during and the final quality of viscoelastic foods after cutting and is, in industrial applications, usually adjusted on an empirical basis. Although previous studies investigated the interplay between the time-dependent properties and cutting behavior of model systems on an elastomer basis, there is still a need to elaborate such cause-effect relations for real foods. The aim of this study was to establish a reproducible manufacture of model caramels on a laboratory scale and to investigate the influence of the compositional parameters, moisture, and solid fat content, as well as cutting speed, on cutting behavior. It was possible to visualize ductile-brittle transitions in cutting force profiles, with an increase in cutting speed resulting in effects similar to that induced by a decreasing moisture content or an increasing solid fat content. Quantitatively, the progression of both maximum force and cutting energy reversed when cutting speed increased and composition changed in favor of a more brittle behavior. This work provides the basis for further research on distinct loading phenomena observed during the cutting of foods and for numerical modeling of the cutting process.


Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 70-77
Author(s):  
Siswanti ◽  
P. Hastuti ◽  
Supriyanto ◽  
R.B.K. Anandito

The production of margarine fat is not only intended to be free from Trans Fatty Acid (TFA) but is also expected to have a higher quality from a nutritional aspect. In this research, margarine fat from sesame oil (SO) and palm stearin (PS) by a chemical interesterification was synthesized. Chemical interesterification is one of the processes used to modify the physico-chemical characteristics of oils and fats. An attempt to chemical-restructure palm stearin and sesame oil to form margarine fat which is suitable for margarine was investigated using sodium methoxide as a catalyst. The effect ratio of PS/SO in color, slip melting point, solid fat index, texture and triacylglycerols (TAGS) profile of margarine fat were studied in research. This research was conducted by three major stages; characterization of sesame oil and palm stearin, synthesis of margarine fat by physical blending and chemical interesterification, and characterization of margarine fat. This study used a Completely Randomized Design (CRD) with one factor, namely the ratio of sesame oil and palm stearin. Margarine fat produced with different variations of the raw material concentration (% w/w SO:PS = 30:70; 40: 60; 50:50, 60:40, and 70:30). Chemical interesterification caused: rearrangement of triacylglycerols, reduction of S3 and U3 and increase in S2U and U2S type TAGs content of all blend, resulting in lowering of melting point, solid fat index and increase texture. Margarine fat in the % ratio of SO:PS = 60:40, has a similar characteristic (texture, slip melting point, solid fat index, and TAGS profiles) which margarine commercial, so has the potential to be developed in the manufacture margarine industry


Sign in / Sign up

Export Citation Format

Share Document