potato blackleg
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 16 (3) ◽  
pp. 198-214
Author(s):  
Shyatesa Razo ◽  
Pavel A. Galushka ◽  
Yuri A. Varitsev ◽  
Anatoly V. Zherdev ◽  
Irina V. Safenkova ◽  
...  

Potato blackleg caused by Dickeya spp. bacteria is one of the most important bacterial diseases of potatoes. The rapid spread of this disease in the territory of Russia requires new effective diagnostic tools for the timely detection of infection. To solve this problem, antisera specific to Dickeya spp. were obtained. Polyclonal antibodies isolated from antisera have shown high affinity for the main species of Dickeya spp. ( D. solani, D. dianthicola, D. chrysanthemi, D. dadantii, D. paradisiaca ). Enzyme linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA) test systems have been developed based on specific and high affinity antibodies that were obtained. For ELISA, the detection limit was 0.8 105 cells/mL for D. solani and 2 104 cells/mL for D. dianthicola . For LFIA, suitable for use in non-laboratory conditions, the detection limit of D. solani was 2 105 cells/mL and the analysis time was 15 minutes. When testing potato seed material, LFIA test system confirmed positive results of ELISA determination in 75 % of samples, and negative - in 100 % of samples.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sanja Marković ◽  
Sonja Milić Komić ◽  
Aleksandra Jelušić ◽  
Renata Iličić ◽  
Ferenc Bagi ◽  
...  

Potato blackleg is frequently observed on the production fields in the Bačka region of Vojvodina province, which is one of the largest potato-growing areas in Serbia. This disease usually occurs during June and July. In July 2020, blackleg symptoms in the form of stem necrotic lesions, vascular discoloration, hollow stems, and wilting of whole plants were noted on potato cultivar VR808 on a field 28 ha in size located in Maglić village (GPS coordinates 45.349325 N, 19.542768 E). Disease incidence was estimated at 20−25%. Isolations were performed from 12 potato samples on Crystal Violet Pectate medium (CVP). Stem sections consisted of brown lesions and healthy tissue (c.10 cm) were surface sterilized with ethyl alcohol 70% (w/v) and rinsed with sterile distilled water. Small pieces of tissue were taken at the edges of stem lesions (between healthy and diseased tissue) were soaked in phosphate buffer saline for 20 min and plated using a standard procedure (Klement et al. 1990). Single colonies that formed pits after 48 hours at 26 °C were re-streaked onto Nutrient Agar (NA) where creamy white colonies with smooth surfaces were formed. A total of 30 isolates were selected and DNA isolated from the colonies was further analyzed by polymerase chain reaction (PCR) using the partial dnaX gene (DNA polymerase subunit III gamma/tau) with primer pair dnaXf/dnaXr for Pectobacterium and Dickeya species identification (Slawiak et al. 2009). A single characteristic band of 535 bp was amplified in all isolates (Slawiak et al. 2009). DNA sequence alignment showed two distinct groups of isolates (Fig.S1), which were genetically uniform within each group. Using BLASTn search, it was established that the dnaX sequence of the first group (consisting of 19 Serbian potato isolates) had 99.79% identity with NCBI-deposited Pectobacterium versatile strains 14A and 3-2 from potato from Belarus (Acc. No. CP034276 and CP024842, respectively) as well as SCC1 from Finland (Acc. No. CP021894). The remaining 11 dnaX sequences had 100% identity with Pectobacterium carotovorum subsp. carotovorum strain CFBP7081 originating from water in Spain (Acc. No. MK516961). The partial dnaX sequences of three Serbian P. versatile isolates (Pv1320, Pv1520, and Pv1620) and one P. carotovorum subsp. carotovorum (Pcc2520) were deposited in GenBank under Acc. No. MW839571, MW805306, MW839572, and MW805307, respectively. These results, indicating combined infection in the observed field, signify the first identification of P. versatile in Serbia. Multilocus sequence analysis (MLSA) performed with proA (proAF1/ proAR1) and mdh (mdh2/mdh4) genes (Ma et al. 2007; Moleleki et al. 2013) grouped three tested Serbian potato P. versatile isolates together with P. versatile strains from NCBI (Fig.S2). For both tested genes, BLASTn search revealed 100% homology with P. versatile strain SCC1 from Finland. Three Serbian P. versatile potato isolates were deposited under Acc. Nos. MZ682623-25 for proA and MZ682620-22 for mdh genes. According to the routine tests suggested for Pectobacteriaceae (Schaad et al. 2001), Serbian isolates possessed microbiological traits identical to P. versatile description (Portier et al. 2019). Pathogenicity was performed on potato cultivar VR808 with three selected P. versatile isolates (Pv1320, Pv1520, and Pv1620) in the following assays: (i) surface-sterilized tuber slices with holes in the center filled with 100 µL of bacterial suspensions (adjusted to 109 CFU mL-1) to test the isolates’ ability to cause soft rot, and (ii) young, four-week old plants with developed 3rd true leaf (c. 30 cm tall) were inoculated by injecting stems with bacterial suspension adjusted to 107 - 108 CFU mL-1 at a height 5 cm above the soil line. Negative controls were treated with sterile distilled water. Inoculated plants were kept under controlled conditions (25 °C temperature and >70% relative humidity). Each assay was replicated twice. Soft rot appeared on tuber slices 24 h after inoculation. On inoculated stems, initial symptoms manifested as greasy elongated spots at inoculation sites two days after inoculation (DAI), and subsequently extended along the vascular tissue and became necrotic. Whole plant's decay was recorded in five DAI, while negative controls remained healthy. To complete Koch's postulates, bacteria were re-isolated from symptomatic potato plants and confirmed by PCR and sequencing of dnaX. This first report of P. versatile in potato indicates that blackleg currently present in Serbia is caused by a diverse bacterial population. This pathogen was first identified in genome comparison as ‘Candidatus Pectobacterium maceratum’ (Shirshikov et al. 2018) and was later renamed as Pectobacterium versatile sp. nov. (Portier et al. 2019). Thus far, bacterium Pectobacterium carotovorum subsp. brasiliensis has been recognized as dominant pathogen on most of the infected fields in Vojvodina province, and was recently noted on one plot subjected to a combined infection with Dickeya dianthicola (Marković et al. 2021). Findings achieved in this study are highly relevant, as they point to the diversity in potato blackleg pathogens, likely due to the increasingly widespread distribution of imported seed potatoes.


2021 ◽  
Vol 9 (6) ◽  
pp. 1187
Author(s):  
Jacques Pédron ◽  
Santiago Schaerer ◽  
Isabelle Kellenberger ◽  
Frédérique Van Gijsegem

Blackleg and soft rot in potato caused by Pectobacterium and Dickeya enterobacteral genera are among the most destructive bacterial diseases in this crop worldwide. In Europe, over the last century, Pectobacterium spp. were the predominant causal agents of these diseases. As for Dickeya, before the large outbreak caused by D. solani in the 2000s, only D. dianthicola was isolated in Europe. The population dynamics of potato blackleg causing soft rot Pectobacteriaceae was, however, different in Switzerland as compared to that in other European countries with a high incidence (60 up to 90%) of Dickeya species (at the time called Erwinia chrysanthemi) already in the 1980s. To pinpoint what may underlie this Swiss peculiarity, we analysed the diversity present in the E. chrysanthemi Agroscope collection gathering potato isolates from 1985 to 2000s. Like elsewhere in Europe during this period, the majority of Swiss isolates belonged to D. dianthicola. However, we also identified a few isolates, such as D. chrysanthemi and D. oryzeae, two species that have not yet been reported in potatoes in Europe. Interestingly, this study allowed the characterisation of two “early” D. solani isolated in the 1990s. Genomic comparison between these early D. solani strains and strains isolated later during the large outbreak in the 2000s in Europe revealed only a few SNP and gene content differences, none of them affecting genes known to be important for virulence.


Author(s):  
Yoshiyuki Aono ◽  
Takato Nakayama ◽  
Takahiro Ozawa ◽  
Yutaka Ushio ◽  
Shinji Yasuoka ◽  
...  

2021 ◽  
Vol 1 (19) ◽  
pp. 242-244
Author(s):  
A.V. Ivanov ◽  
A.V. Zherdev ◽  
B.B. Dzantiev

Test systems have been developed for the detection of phytopathogens, combining recombinase polymerase amplification and membrane test strips. Test systems provide detection of potato virus X, potato spindle tuber viroid, potato blackleg pathogen (Dickeya solani), as well as multi-analysis of three viruses. Amplification is carried out at 37 °C. The analysis time does n ot exceed 30 min.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2288-2288
Author(s):  
L. Tsror (Lahkim) ◽  
O. Erlich ◽  
S. Lebiush ◽  
I. Galilov ◽  
M. Hazanovsky ◽  
...  

2020 ◽  
Vol 102 (3) ◽  
pp. 871-879
Author(s):  
Wen Li-ping ◽  
Zhong Min ◽  
Ren Min-hua ◽  
Li Xing-wei ◽  
Liu Qiong-guang

2020 ◽  
Vol 86 (5) ◽  
pp. 423-427
Author(s):  
Taketo Fujimoto ◽  
Shinji Yasuoka ◽  
Yoshiyuki Aono ◽  
Takato Nakayama ◽  
Takehiro Ohki ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document