fuel utilization
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 82)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 249 ◽  
pp. 114839
Author(s):  
Kalimuthu Selvam ◽  
Yosuke Komatsu ◽  
Anna Sciazko ◽  
Shozo Kaneko ◽  
Naoki Shikazono

2021 ◽  
Author(s):  
Felix Schaefer

One of the possible SOFC system-configurations providing the highest potential of electrical DC-efficiency of up to 65% is a SOFC-system with anode exhaust gas recirculation (AEGR), where part of the depleted anode exhaust gas is recirculated and mixed with fresh natural gas upstream of the reformer. For safe and durable operation of a SOFC-system, the oxygen-to-carbon-ratio and the fuel utilization as characteristic parameters must not exceed stack- and reformer-specific thresholds. The determination and control of the characteristic parameters are therefore of crucial importance. However, this poses especially for SOFC-systems with AEGR due to enhanced system complexity a challenging task. In this paper, the authors present an overview on representative control strategies as well as different approaches to determine or diagnose characteristic parameters with emphasis on SOFC-systems with AEGR. Some conclusions are discussed based on the provided overview and outlines recommendations for future research work.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4195
Author(s):  
Heather C. Spooner ◽  
Stefani A. Derrick ◽  
Magdalena Maj ◽  
Rodrigo Manjarín ◽  
Gabriella V. Hernandez ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is a serious metabolic condition affecting millions of people worldwide. A “Western-style diet” has been shown to induce pediatric NAFLD with the potential disruption of skeletal muscle composition and metabolism. To determine the in vivo effect of a “Western-style diet” on pediatric skeletal muscle fiber type and fuel utilization, 28 juvenile Iberian pigs were fed either a control diet (CON) or a high-fructose, high-fat diet (HFF), with or without probiotic supplementation, for 10 weeks. The HFF diets increased the total triacylglycerol content of muscle tissue but decreased intramyocellular lipid (IMCL) content and the number of type I (slow oxidative) muscle fibers. HFF diets induced autophagy as assessed by LC3I and LC3II, and inflammation, as assessed by IL-1α. No differences in body composition were observed, and there was no change in insulin sensitivity, but HFF diets increased several plasma acylcarnitines and decreased expression of lipid oxidation regulators PGC1α and CPT1, suggesting disruption of skeletal muscle metabolism. Our results show that an HFF diet fed to juvenile Iberian pigs produces a less oxidative skeletal muscle phenotype, similar to a detraining effect, and reduces the capacity to use lipid as fuel, even in the absence of insulin resistance and obesity.


Author(s):  
Ruslan U. Tsukanov ◽  
Victor I. Ryabkov

The method of transport category airplane flight range estimation taking into account its center-of-gravity position variation in the process of fuel utilization at cruising flight mode is presented. The method structure includes the following models:– Interinfluence of main parameters on each other in the process of fuel utilization;– Estimation of CG position influence on lift-to-drag ratio in cruising mode;– Quantitative estimation of center-of-gravity position variation influence on airplane flight range.Simulation of the main parameters is based on authoring researches, establishing interinfluence among geometrical and aerodynamic parameters of wing, parameters of horizontal tail and center-of-gravity position variation caused by fuel utilization in cruise flight. Such model allows estimating airplane center-of-gravity influence on their values and relative position.Aerodynamic parameters variation caused by center-of-gravity shift resulted in necessity to take the influence into account, for required engine thrust variation; that is shown in the publication in the form of dependences  allowing to take into account the required thrust variation and their influence on range variation.On the base of interinfluence model and taking into account required thrust variation (with center-of-gravity position shift), lift-to-drag variation has been obtained and analyzed in the form of dependences ,  for middle airplane of transport category.Expression for estimation of airplane flight range under variable values of its mass and center-of-gravity position is obtained on the base of these models; that allows to increase flight range by means of center-of-gravity position dedicated shift.On the example of mid-range transport airplane, it is shown, that at Mach number  and center-of-gravity shift back from  to , the increase of flight range makes .On the base of presented models, it is shown, that airplane center-of-gravity position influences lift-to-drag ratio, fuel efficiency and as a result on flight range at cruising flight mode.Application of aft center-of-gravity position allows to decrease engine required thrust (and to decrease fuel consumption), and increase lift-to-drag ratio and airplane flight range.


Energy ◽  
2021 ◽  
pp. 122484
Author(s):  
Tiancheng Ouyang ◽  
Jie Lu ◽  
Peihang Xu ◽  
Xiaoyi Hu ◽  
Jingxian Chen

2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Zhao ◽  
Lei Lou ◽  
Xingjie Peng ◽  
Bin Zhang ◽  
Lianjie Wang

In the design of a nuclear reactor, improving fuel utilization and extending burnup are two of the most important goals. A concept design of spectral-shift control rods is presented to extend cycle length and fuel utilization. First, a small lead-based reactor, SLBR-50, is preliminarily designed, and the design rationality is proved. Next, the concept design of spectral-shift control rods is presented and analyzed. Finally, numerical results of the small reactor design show that the burnup depth is extended by 73.3% and the fuel utilization rate for 235U and 238U is improved by 66.6 and 68.4%. All results are calculated using a Monte-Carlo code RMC. These results show advantages of the concept design for the spectral-shift control rod.


Author(s):  
Toshiaki Matsui ◽  
Tomoki Fujinaga ◽  
Ritsuki Shimizu ◽  
Takashi Ozeki ◽  
Hiroki Muroyama ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Utkarsh Shikhar ◽  
Kas Hemmes ◽  
Theo Woudstra

Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen, while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study, the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization, standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.


2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 283-283
Author(s):  
Akifumi Ido ◽  
Takumi Imabayashi ◽  
Koichi Asano ◽  
Tohru Yamamoto ◽  
Hiroshi Morita ◽  
...  

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 107-107
Author(s):  
Toshiaki Matsui ◽  
Tomoki Fujinaga ◽  
Takashi Ozeki ◽  
Ritsuki Shimizu ◽  
Hiroki Muroyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document