axial compressors
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 80)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
А.А. Равин ◽  
О.В. Хруцкий

В статье рассматривается стендовая реализация предложенного авторами способа проведения экспериментов с рабочими лопатками аксиальных компрессоров, целью которых является отработка методов мониторинга вибраций лопаток и алгоритмов выявления характерных дефектов (усталостных трещин) непосредственно во время работы компрессора. Для обеспечения безопасности экспериментов с повреждёнными компрессорными лопатками в конструкции стенда применён один из эвристических принципов решения изобретательских задач, сформулированный Г.С. Альтшуллером, который состоит в том, что движущиеся на натурном объекте детали (лопатки) делают неподвижными, а неподвижные детали (датчики) приводят в движение таким образом, чтобы сохранить скорости их относительных перемещений. Рассмотрена конструкция стенда и состав измерительных приборов. Приведены результатов экспериментов с исправными компрессорными лопатками и с лопатками, имеющими различные стадии развития дефектов (усталостных трещин). Показано, что графическое представление ранжированных массивов измеренных временных интервалов позволяет судить о наличии дефекта и о стадии его развития. The article discusses the bench implementation of the method proposed by the authors for conducting experiments with rotor blades of axial compressors, the purpose of which is to develop methods for monitoring blade vibrations and algorithms for detecting characteristic defects (fatigue cracks) directly during compressor operation. To ensure the safety of experiments with damaged compressor blades, one of the heuristic principles for solving inventive problems, formulated by G.S. Altshuller, which consists in the fact that parts (blades) moving on a full-scale object are made stationary, and stationary parts (sensors) are set in motion in such a way as to maintain the speed of their relative movements. The design of the stand and the composition of the measuring instruments are considered. The results of experiments with serviceable compressor blades and blades with different stages of development of defects (fatigue cracks) are presented. It is shown that the graphical presentation of ranked arrays of measured time intervals allows one to judge the presence of a defect and the stage of its development.


Author(s):  
Hanxuan Zeng ◽  
Xinqian Zheng ◽  
Mehdi Vahdati

Abstract The occurrence of stall and surge in axial compressors has a great impact on the performance and reliability of aero-engines. Accurate and efficient prediction of the key features during these events has long been the focus of engine design processes. In this paper, a new body-force model that can capture the three-dimensional and unsteady features of stall and surge in compressors at a fraction of time required for URANS computations is proposed. To predict the rotating stall characteristics, the deviation of local airflow angle from the blade surface is calculated locally during the simulation. According to this local deviation, the computational domain is divided into stalled and forward flow regions, and the body-force field is updated accordingly; to predict the surge characteristics, the local airflow direction is used to divide the computational domain into reverse flow regions and forward flow regions. A single-stage axial compressor and a three-stage axial compressor are used to verify the proposed model. The results show that the method is capable of capturing stall and surge characteristics correctly. Compared to the traditional fully three-dimensional URANS method (fRANS), the simulation time for multi-stage axial compressors is reduced by 1 to 2 orders of magnitude.


Author(s):  
Baojie Liu ◽  
Chuanhai Zhang ◽  
Guangfeng An ◽  
Du Fu ◽  
Xianjun Yu

2021 ◽  
pp. 1-16
Author(s):  
Marco Gambitta ◽  
Arnold Kühhorn ◽  
Bernd Beirow ◽  
Sven Schrape

Abstract The manufacturing geometrical variability is an unavoidable source of uncertainty in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. Therefore, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A data reduction methodology is proposed to represent the uncertainty with a minimal set of variables. The manufacturing geometrical variability model allows to represent the input uncertainty and probabilistically evaluate its impact on the aeroelastic problem. An uncertainty quantification is performed in order to evaluate the resulting variability on the modal forcing acting on the vibrating rotor blades. Of particular interest is the possible rise of low engine orders due to the mistuned flow field along the annulus. A reconstruction algorithm allows the representation of the variability during one rotor revolution. The uncertainty on low harmonics of the modal rotor forcing can be therefore identified and quantified.


2021 ◽  
pp. 1-10
Author(s):  
Sina C Stapelfeldt ◽  
Christoph Brandstetter

Abstract Non-synchronous vibrations (NSV) arising near the stall boundary of compressors are a recurring and potentially safety-critical problem in modern axial compressors and fans. Recent research has improved predictive capabilities and physical understanding of NSV but prevention measures are still lacking. This paper addresses this by systematically studying the influence of aerodynamic and structural mistuning on NSV. This is achieved by incorporating mistuning effects in a validated linear model, in which individual blade modes are modelled as single-degree of freedom mass oscillators coupled by a convected aerodynamic disturbance term. The results demonstrate that both structural and aerodynamic mistuning are effective. While structural mistuning improves stability by preventing aero-structure lock-in, aerodynamic mistuning, which locally reduces the tip blockage, attenuates the aerodynamic disturbance causing NSV. In the latter case, the circumferentially-averaged conditions are shown to be most influential, while the pattern plays a minor role. A combination of moderate aerodynamic and structural mistuning (1%) was also found to be effective. These findings are relevant for design decisions, demonstrating that small blade-to-blade variations can suppress NSV.


2021 ◽  
Author(s):  
Grigorii Popov ◽  
Evgenii Goriachkin ◽  
Oleg Baturin ◽  
Valerii Matveev ◽  
Igor Egorov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document