Model Simulations
Recently Published Documents





2022 ◽  
Ulf Büntgen ◽  
Sylvie Hodgson Smith ◽  
Sebastian Wagner ◽  
Paul Krusic ◽  
Jan Esper ◽  

AbstractThe largest explosive volcanic eruption of the Common Era in terms of estimated sulphur yield to the stratosphere was identified in glaciochemical records 40 years ago, and dates to the mid-thirteenth century. Despite eventual attribution to the Samalas (Rinjani) volcano in Indonesia, the eruption date remains uncertain, and the climate response only partially understood. Seeking a more global perspective on summer surface temperature and hydroclimate change following the eruption, we present an analysis of 249 tree-ring chronologies spanning the thirteenth century and representing all continents except Antarctica. Of the 170 predominantly temperature sensitive high-frequency chronologies, the earliest hints of boreal summer cooling are the growth depressions found at sites in the western US and Canada in 1257 CE. If this response is a result of Samalas, it would be consistent with an eruption window of circa May–July 1257 CE. More widespread summer cooling across the mid-latitudes of North America and Eurasia is pronounced in 1258, while records from Scandinavia and Siberia reveal peak cooling in 1259. In contrast to the marked post-Samalas temperature response at high-elevation sites in the Northern Hemisphere, no strong hydroclimatic anomalies emerge from the 79 precipitation-sensitive chronologies. Although our findings remain spatially biased towards the western US and central Europe, and growth-climate response patterns are not always dominated by a single meteorological factor, this study offers a global proxy framework for the evaluation of paleoclimate model simulations.

2022 ◽  
Zhen Wu ◽  
Dikla Aharonovich ◽  
Dalit Roth-Rosenberg ◽  
Osnat Weissberg ◽  
Tal Luzzatto-Knaan ◽  

Marine phytoplankton are responsible for about half of the photosynthesis on Earth. Many are mixotrophs, combining photosynthesis with heterotrophic assimilation of organic carbon but the relative contribution of these two carbon sources is not well quantified. Here, single-cell measurements reveal that Prochlorococcus at the base of the photic zone in the Eastern Mediterranean Sea are obtaining only ~20% of carbon required for growth by photosynthesis. Consistently, laboratory-calibrated evaluations of Prochlorococcus photosynthesis indicate that carbon fixation is systematically too low to support published in situ growth rates in the deep photic layer of the Pacific Ocean. Furthermore, agent-based model simulations show that mixotrophic cells maintain realistic growth rates and populations 10s of meters deeper than obligate photo-autotrophs, deepening the nutricline and Deep Chlorophyll Maximum by ~20 m. Time-series of Prochlorococcus ecotype-abundance from the subtropical North Atlantic and North Pacific suggest that up to 30% of the Prochlorococcus cells live where light intensity is not enough to sustain obligate photo-autotrophic populations during warm, stratified periods. Together, these data and models suggest that mixotrophy underpins the ecological success of a large fraction of the global Prochlorococcus population and its collective genetic diversity.

Friction ◽  
2022 ◽  
Jiawei Cao ◽  
Qunyang Li

AbstractMechanical vibration, as an alternative of application of solid/liquid lubricants, has been an effective means to modulate friction at the macroscale. Recently, atomic force microscopy (AFM) experiments and model simulations also suggest a similar vibration-induced friction reduction effect for nanoscale contact interfaces, although an additional external vibration source is typically needed to excite the system. Here, by introducing a piezoelectric thin film along the contact interface, we demonstrate that friction measured by a conductive AFM probe can be significantly reduced (more than 70%) when an alternating current (AC) voltage is applied. Such real-time friction modulation is achieved owing to the localized nanoscale vibration originating from the intrinsic inverse piezoelectric effect, and is applicable for various material combinations. Assisted by analysis with the Prandtl—Tomlinson (P—T) friction model, our experimental results suggest that there exists an approximately linear correlation between the vibrational amplitude and the relative factor for perturbation of sliding energy corrugation. This work offers a viable strategy for realizing active friction modulation for small-scale interfaces without the need of additional vibration source or global excitation that may adversely impact device functionalities.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262316
Xi Guo ◽  
Abhineet Gupta ◽  
Anand Sampat ◽  
Chengwei Zhai

The COVID-19 pandemic has drastically shifted the way people work. While many businesses can operate remotely, a large number of jobs can only be performed on-site. Moreover as businesses create plans for bringing workers back on-site, they are in need of tools to assess the risk of COVID-19 for their employees in the workplaces. This study aims to fill the gap in risk modeling of COVID-19 outbreaks in facilities like offices and warehouses. We propose a simulation-based stochastic contact network model to assess the cumulative incidence in workplaces. First-generation cases are introduced as a Bernoulli random variable using the local daily new case rate as the success rate. Contact networks are established through randomly sampled daily contacts for each of the first-generation cases and successful transmissions are established based on a randomized secondary attack rate (SAR). Modification factors are provided for SAR based on changes in airflow, speaking volume, and speaking activity within a facility. Control measures such as mask wearing are incorporated through modifications in SAR. We validated the model by comparing the distribution of cumulative incidence in model simulations against real-world outbreaks in workplaces and nursing homes. The comparisons support the model’s validity for estimating cumulative incidences for short forecasting periods of up to 15 days. We believe that the current study presents an effective tool for providing short-term forecasts of COVID-19 cases for workplaces and for quantifying the effectiveness of various control measures. The open source model code is made available at

2022 ◽  
Vol 8 ◽  
Ryota Nakajima ◽  
Toru Miyama ◽  
Tomo Kitahashi ◽  
Noriyuki Isobe ◽  
Yuriko Nagano ◽  

Extreme storms, such as tropical cyclones, are responsible for a significant portion of the plastic debris transported from land to sea yet little is known about the storm response of microplastics and other debris in offshore and open waters. To investigate this, we conducted floating plastic surveys in the center of Sagami Bay, Japan approximately 30 km from the coastline, before and after the passage of a typhoon. The concentrations (number of particles/km2) of micro- and mesoplastics were two orders of magnitude higher 1-day after the typhoon than the values recorded pre-typhoon and the mass (g/km2) of plastic particles (sum of micro- and mesoplastics) increased 1,300 times immediately after the storm. However, the remarkably high abundance of micro- and mesoplastics found at 1-day after the typhoon returned to the pre-typhoon levels in just 2 days. Model simulations also suggested that during an extreme storm a significant amount of micro- and mesoplastics can be rapidly swept away from coastal to open waters over a short period of time. To better estimate the annual load of plastics from land to sea it is important to consider the increase in leakages of plastic debris into the ocean associated with extreme storm events.

Mohid Muneeb Khattak ◽  
Christopher Sugino ◽  
Alper Erturk

We investigate piezoelectric energy harvesting on a locally resonant metamaterial beam for concurrent power generation and bandgap formation. The mechanical resonators (small beam attachments on the main beam structure) have piezoelectric elements which are connected to electrical loads to quantify their electrical output in the locally resonant bandgap neighborhood. Electromechanical model simulations are followed by detailed experiments on a beam setup with nine resonators. The main beam is excited by an electrodynamic shaker from its base over the frequency range of0–150 Hz and the motion at the tip is measured using a laser Doppler vibrometer to extract its transmissibility frequency response. The formation of a locally resonant bandgap is confirmed and a resistor sweep is performed for the energy harvesters to capture the optimal power conditions. Individual power outputs of the harvester resonators are compared in terms of their percentage contribution to the total power output. Numerical and experimental analysis shows that, inside the locally resonant bandgap, most of the vibrational energy (and hence harvested energy) is localized near the excited base of the beam, and the majority of the total harvested power is extracted by the first few resonators.

2022 ◽  
Felix Ploeger ◽  
Hella Garny

Abstract. Despite the expected opposite effects of ozone recovery, the stratospheric Brewer-Dobson circulation (BDC) has been found to weaken in the Northern hemisphere (NH) relative to the Southern hemisphere (SH) in recent decades, inducing substantial effects on chemical composition. We investigate hemispheric asymmetries in BDC changes since about 2000 in simulations with the transport model CLaMS driven with different reanalyses (ERA5, ERA-Interim, JRA-55, MERRA-2) and contrast those to a suite of free-running climate model simulations. We find that age of air increases robustly in the NH stratosphere relative to the SH in all reanalyses considered. Related nitrous oxide changes agree well between reanalysis-driven simulations and satellite measurements, providing observational evidence for the hemispheric asymmetry in BDC changes. Residual circulation metrics further show that the composition changes are caused by structural BDC changes related to an upward shift and strengthening of the deep BDC branch, resulting in longer transit times, and a downward shift and weakening shallow branch in the NH relative to the SH. All reanalyses agree on this mechanism. Although climate model simulations show that ozone recovery will lead to overall reduced circulation and age of air trends, the hemispherically asymmetric signal in circulation trends is small compared to internal variability. Therefore, the observed circulation trends over the recent past are not in contradiction to expectations from climate models. Furthermore, the hemispheric asymmetry in BDC trends imprints on the composition of the lower stratosphere and the signal might propagate into the troposphere, potentially affecting composition down to the surface.

Lijing Cheng ◽  
John Abraham ◽  
Kevin E. Trenberth ◽  
John Fasullo ◽  
Tim Boyer ◽  

AbstractThe increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 239
Sonja Langthaler ◽  
Jasmina Lozanović Šajić ◽  
Theresa Rienmüller ◽  
Seth H. Weinberg ◽  
Christian Baumgartner

The mathematical modeling of ion channel kinetics is an important tool for studying the electrophysiological mechanisms of the nerves, heart, or cancer, from a single cell to an organ. Common approaches use either a Hodgkin–Huxley (HH) or a hidden Markov model (HMM) description, depending on the level of detail of the functionality and structural changes of the underlying channel gating, and taking into account the computational effort for model simulations. Here, we introduce for the first time a novel system theory-based approach for ion channel modeling based on the concept of transfer function characterization, without a priori knowledge of the biological system, using patch clamp measurements. Using the shaker-related voltage-gated potassium channel Kv1.1 (KCNA1) as an example, we compare the established approaches, HH and HMM, with the system theory-based concept in terms of model accuracy, computational effort, the degree of electrophysiological interpretability, and methodological limitations. This highly data-driven modeling concept offers a new opportunity for the phenomenological kinetic modeling of ion channels, exhibiting exceptional accuracy and computational efficiency compared to the conventional methods. The method has a high potential to further improve the quality and computational performance of complex cell and organ model simulations, and could provide a valuable new tool in the field of next-generation in silico electrophysiology.

Sign in / Sign up

Export Citation Format

Share Document