chemotherapeutic resistance
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 55)

H-INDEX

25
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Marek M. Drozdz ◽  
Ashley S. Doane ◽  
Rached Alkallas ◽  
Garrett Desman ◽  
Rohan Bareja ◽  
...  

cAMP signaling pathways are critical for both oncogenesis and tumor suppression. cAMP signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. We developed a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncovered a previously unappreciated nuclear cAMP microdomain that functionally activates a tumor suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397, export of YAP from the nucleus, without YAP protein degradation. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer, and since Hippo pathway deregulation can lead to oncogenesis and chemotherapeutic resistance, drugs directed at the nuclear cAMP microdomain may provide new avenues for the treatment of cancer.


2021 ◽  
pp. 2107529
Author(s):  
Yi Zheng ◽  
Xin Li ◽  
Caihong Dong ◽  
Li Ding ◽  
Hui Huang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Gaofeng Li ◽  
Jun Gong ◽  
Shulong Cao ◽  
Zhaoyang Wu ◽  
Dong Cheng ◽  
...  

Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-related deaths in women. Systemic chemotherapy with platinum-based compounds or taxanes is the first-line treatment for ovarian cancer. However, resistance to these chemotherapeutic drugs worsens the prognosis. The underlying mechanism of chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs, including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated in the development of drug resistance. Abnormally expressed non-coding RNAs can promote ovarian cancer resistance by inducing apoptosis inhibition, protective autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition, abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian cancer, including their mechanisms, targets, and potential signaling pathways. This will facilitate the development of novel chemotherapeutic agents that can target these non-coding RNAs and improve ovarian cancer treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Shuang Ba ◽  
Mingxi Qiao ◽  
Li Jia ◽  
Jiulong Zhang ◽  
Xiuli Zhao ◽  
...  

Cancer stem-like cells (CSLCs) have been considered to be one of the main problems in tumor treatment owing to high tumorigenicity and chemotherapy resistance. In this study, we synthesized a novel mitochondria-target derivate, triphentlphosphonium-resveratrol (TPP-Res), and simultaneously encapsulated it with doxorubicin (Dox) in pH-sensitive liposomes (PSL (Dox/TPP-Res)), to reverse chemotherapeutic resistance of CSLCs. PSL (Dox/TPP-Res) was approximately 165 nm in size with high encapsulation efficiency for both Dox and TPP-Res. Cytotoxicity assay showed that the optimal synergistic effect was the drug ratio of 1:1 for TPP-Res and Dox. Cellular uptake and intracellular trafficking assay indicated that PSL (Dox/TPP-Res) could release drugs in acidic endosomes, followed by mitochondrial targeting of TPP-Res and nucleus transports for Dox. The mechanisms for reversing the resistance in CSLCs were mainly attributed to a synergistic effect for reduction of mitochondrial membrane potential, activation of caspase cascade reaction, reduction of ATP level and suppression of the Wnt/β-catenin pathway. Further, in vivo assay results demonstrated that the constructed liposomes could efficiently accumulate in the tumor region and possess excellent antineoplastic activity in an orthotopic xenograft tumor model with no evident systemic toxicity. The above experimental results determined that PSL (Dox/TPP-Res) provides a new method for the treatment of heterogenecity tumors.


2021 ◽  
Author(s):  
Aiqing Zhao ◽  
Yanbin Zhao ◽  
Wanlin Liu ◽  
Wei Feng ◽  
Wenhua Xing ◽  
...  

Abstract BackgroundOsteosarcoma (OS) is a highly malignant tumor. Improving chemotherapeutic resistance is very important to improve the survival rate of OS. Exosomes and microRNAs (MiRNA) play important roles in the mechanism of chemotherapeutic resistance transmission. More and more researches focus the mechanism of miRNAs carried by exosomes in the transmission of chemotherapeutic resistance of OS. This study focused on exploring the mechanism of exosomal miR-331 in the transmission of chemoresistance in OS.MethodsWe cultured OS drug-resistant cells and extracted exosomes of these cells. The secretion and uptake of exosomes in OS drug-resistant cells and OS cells (OSCs) were confirmed by fluorescence tracking assay and transwell experiments. The differential expression of microRNA-331 (miR-331) in exosomes of OS resistant and OS cells was investigated by RT-PCR. The effects of drug-resistant exosomes on proliferation and migration of OS cells were determined by MTT assay and scratches assay. MDC staining, RT-PCR, and Western blot were used to detect the role of autophagy which regulated by drug-resistant cell-derived exosom-miR-331.ResultsWe found that the expression difference of miR-331 between MG63/CDDP and MG63 was the most significant. Drug resistant OSCs secreted exosomes and were ingested by OSCs, which then promoted OSCs to acquire drug resistance. In addition, exosomes secreted by drug-resistant OSCs promote drug resistance by carrying miRNAs. Interestingly, inhibition of miRNA resulted in reduced drug resistance transmission of exosomes. Finally, we found that the exosomes secreted by drug-resistant OSCs could induce autophagy of OSCs by carrying miR-331, thus making OSCs acquire drug resistance. Inhibition of miR-331 can effectively improve drug resistance of OSCs.ConclusionsChemoresistant OSCs-derived exosomes promote the transmission of drug resistance by carrying miR-331 and inducing autophagy. Inhibition of miR-331 could effectively alleviate drug resistance of OSCs.


2021 ◽  
Author(s):  
Aiqing Zhao ◽  
Yan bin Zhao ◽  
Wanlin Liu ◽  
Wei Feng ◽  
Wenhua Xing ◽  
...  

Abstract Background Osteosarcoma (OS) is a highly malignant tumor. Improving chemotherapeutic resistance is very important to improve the survival rate of OS. Exosomes and microRNAs (MiRNA) play important roles in the mechanism of chemotherapeutic resistance transmission. More and more researches focus the mechanism of miRNAs carried by exosomes in the transmission of chemotherapeutic resistance of OS. This study focused on exploring the mechanism of exosomal miR-331 in the transmission of chemoresistance in OS. Methods We cultured OS drug-resistant cells and extracted exosomes of these cells. The secretion and uptake of exosomes in OS drug-resistant cells and OS cells (OSCs) were confirmed by fluorescence tracking assay and transwell experiments. The differential expression of microRNA-331 (miR-331) in exosomes of OS resistant and OS cells was investigated by RT-PCR. The effects of drug-resistant exosomes on proliferation and migration of OS cells were determined by MTT assay and scratches assay. MDC staining, RT-PCR, and Western blot were used to detect the role of autophagy which regulated by drug-resistant cell-derived exosom-miR-331. Results We found that the expression difference of miR-331 between drug-resistant cells of MG63 and HOS cell lines and tumor cells was the most significant. Drug resistant OSCs secreted exosomes and were ingested by OSCs, which then promoted OSCs to acquire drug resistance. In addition, exosomes secreted by drug-resistant OSCs promote drug resistance by carrying miRNAs. Interestingly, inhibition of miRNA resulted in reduced drug resistance transmission of exosomes. Finally, we found that the exosomes secreted by drug-resistant OSCs could induce autophagy of OSCs by carrying miR-331, thus making OSCs acquire drug resistance. Inhibition of miR-331 can effectively improve drug resistance of OSCs. Conclusions Chemoresistant OSCs-derived exosomes promote the transmission of drug resistance by carrying miR-331 and inducing autophagy. Inhibition of miR-331 could effectively alleviate drug resistance of OSCs.


Life Sciences ◽  
2021 ◽  
pp. 119667
Author(s):  
Bruna Oliveira ◽  
Ana Carolina Correa de Assis ◽  
Natália Melo Souza ◽  
Luiz Fernando Romanholo Ferreira ◽  
Renato Nery Soriano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document