curvature ratio
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Chao Ning ◽  
Yalin Li ◽  
Ping Huang ◽  
Hongbo Shi ◽  
Haichao Sun

Centrifugal pumps are the critical components in deep-sea mining. In order to investigate the particle motion in the curved channel of the impeller, three different types of curvature conform to blade profile to simplify the impeller design of pumps. A numerical study is conducted to investigate the flow field in a varying-curvature channel for solid-liquid two-phase flow. The flow of particles within the varying curvature channel is studied by combining the discrete element method (DEM) with computational fluid dynamics (CFD) and a comparison with Particle Image Velocimetry (PIV) test results. The results show that a polyhedral mesh with a small mesh number yields very accurate results, which makes it very suitable for CFD-DEM. Based on this method, the movement of a single particle is compared and analyzed, and the particle-motion law is obtained. The effects of the curvature ratio Cr and area ratio Ar on the motion law for a single particle are studied, and the simulation results are analyzed statistically. The results show that the effect of Cr on both the particle slip velocity and the turbulent kinetic energy only changes its strength, while the distribution law does not change significantly. Compared with the curvature ratio Cr, the area ratio Ar has a greater impact on the particles, and its distribution law becomes clearly different. As the area ratio Ar increases, the arc radius and length of the corresponding particle trajectory decrease.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012012
Author(s):  
R Taibi ◽  
G Yin ◽  
M C Ong

Abstract Elbow pipes are crucial parts of many fluid transport systems in the oil and gas industry. The curved shape of such pipes induces centrifugal forces on the internal flow, ultimately affecting the flow velocity and creating pressure differences within the elbow. The present study aims to investigate the effects of the curvature ratio of an elbow pipe on the internal pipe flow using three-dimensional numerical simulations. For laminar flows, the simulations are based on four Reynolds numbers ranging from 200 to 2000 and three curvature ratios of Ro=5.6, 11.2 and 22.4. A mesh convergence study is carried out for 3 meshes with increasing resolution. The results based on the optimal mesh is then compared with the published experimental and numerical results for validation. Once the validation is confirmed, further simulation and analysis are performed for each combination of curvature ratio and Reynolds number. The results reveal that there is flow separation due to the centrifugal forces induced by the curved shape. It is also shown that secondary flows consisting of symmetrical helical vortices called Dean vortices are generated. The intensity of this secondary flow is shown to increase with the increasing Dean number.


Author(s):  
Nitin Kumar Mamidi ◽  
Karthik Balasubramanian ◽  
Kiran Kumar Kupireddi ◽  
V P Chandramohan ◽  
Poh Seng Lee ◽  
...  

Rapid advancement toward miniaturization has emerged with confront for superior heat dissipation techniques. Of all the available cooling systems, microchannel-based cooling systems stand out to provide better cooling performance through superior heat removal abilities. In the present study, the cooling performance and hydraulic flow characteristics of a radial curved microchannel with three curvature ratios were numerically investigated and compared with a radial straight microchannel. Unlike the conventional straight microchannels, curved channels possess better fluid mixing as a result of the centrifugal force caused due to curvature. This phenomenon has a significant effect on heat transfer and fluid flow characteristics. Work on radial curved microchannels has been scarce and there is a lot of potential to augment the heat transfer with lower pumping power particularly with a central inlet. A three-dimensional conjugate heat transfer analysis was carried out for three radial curved microchannels and a radial straight microchannel using the ANSYS Fluent commercial software with the Reynolds number range of 125–275. The results showed a Nusselt number increment of 36.38% for radial curved microchannels when compared to the radial straight microchannel. Further, the lowest average wall temperature was noted for the radial curved microchannel with a curvature ratio of 0.17 which was 15.63 °C lower when compared to that in a radial straight microchannel for the same Reynolds number. Contours of velocity and temperature are presented at various locations along the stream to aid the results. The overall performance of all three radial curved microchannels was found to be higher than that of the radial straight microchannel in the Reynolds number range considered, out of which the maximum performance factor of 1.245 was obtained for the radial curved microchannel with a curvature ratio of 0.17 as compared to the radial straight microchannel.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1555
Author(s):  
Juan Pablo Hurtado ◽  
Bryan Villegas ◽  
Sebastián Pérez ◽  
Enrique Acuña

The connection between an intake fan and a ventilation shaft must be designed in such a way that it minimizes the energy waste due to singularity losses. As a result, the questions of which radius of curvature to use and if guide vanes have to be included need to be answered. In that case, the variables such as the number, upstream and downstream penetration length, radius of curvature, and width of the vanes, need to be defined. Although this work is oriented to mine ventilation, these questions are usually valid in other engineering applications as well. The objective of this study is to define the previously mentioned variables to determine the optimal design combination for the radius/diameter relationship (r/D). Computational fluid dynamics was used to determine the shock loss factor of seven elbow curvature ratios for a 3 m diameter duct and fan, with and without guide vanes to estimate the best performing configuration and, therefore, to maximize the fan airflow volume. The methodology used consisted of initially developing models in 2D geometries, to optimize the meshing and the CPU use, and studying separately the number of vanes, upstream and downstream penetration, radius of curvature, and width of the vanes for each curvature ratio (r/D). Then, the best-performing variable combinations for each curvature ratio were selected to be simulated and studied with the 3D geometries. The application of the guide vane designs for three-dimensional simulated geometries is presented, first without and then with guide vanes, including the shock loss factors obtained. The methodology and obtained results allowed quantifying the energy savings and to reduce the CFD simulations steps required to optimize the design of the elbow and guide vanes. The results obtained cannot be used with elbows in exhaust fans, because fluid dynamics phenomena are different.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sushovan Chatterjee ◽  
Subhasish Das ◽  
Neelam Kumar Sarma

Purpose The heat transfer within a heat exchanger is highly influenced by geometry of the components especially those with hollow structures like tubes. This paper aims to intend toward the study of efficient and optimized heat transfer in the bends of superheater tubes, with different curvature ratio at constant Reynolds Number. Design/methodology/approach The effect of changing curvature ratio on enthalpy of the fluid passing through the superheater tubes for multi-pass system has been studied with the aid of computational fluid dynamics (CFD) using ANSYS 14.0. Initially a superheater tube with two pass system has been examined with different curvature ratios of 1.425, 1.56, 1.71, 1.85 and 1.99. An industry specified curvature ratio of 1.71 with two pass is investigated, and a comparative assessment has been carried out. This is intended toward obtaining an optimized radius of curvature of the bend for enhancement of heat transfer. Findings The results obtained from software simulation revealed that the curvature ratio of 1.85 provides maximum heat transfer to the fluid flowing through the tube with two pass. This result has been found to be consistent with higher number of passes as well. The effect of secondary flow in bends of curvature has also been illustrated in the present work. Research limitations/implications The study of heat transfer in thermodynamic systems is a never-ending process and has to be continued for the upliftment of power plant performances. This study has been conducted on steady flow behavior of the fluid which may be upgraded by carrying out the same in transient mode. The impact of different curvature ratios on some important parameters such as heat transfer coefficients will certainly upgrade the value of research. Originality/value This computational study provided comprehensive information on fluid flow behavior and its effect on heat transfer in bends of curvature of superheater tubes inside the boiler. It also provides information on optimized bend of curvature for efficient heat transfer process.


2021 ◽  
Vol 148 ◽  
pp. 103843
Author(s):  
Mingyang Wang ◽  
Eldad Avital ◽  
Theodosios Korakianitis ◽  
John Williams ◽  
Kaiming Ai

2021 ◽  
Vol 33 (1) ◽  
pp. 013301
Author(s):  
Kaimin Wang ◽  
Han Chen ◽  
Hongyu Ge ◽  
Xiaohua Liu ◽  
Hongsheng Liu ◽  
...  

2020 ◽  
Vol 117 (51) ◽  
pp. 32731-32738
Author(s):  
Leia Colin ◽  
Antoine Chevallier ◽  
Satoru Tsugawa ◽  
Florian Gacon ◽  
Christophe Godin ◽  
...  

In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.e., along predicted maximal tension, which is transverse for cylindrical pressurized vessels. Here, we adapted a microwell setup to test these predictions in a single-cell system. We confined protoplasts laterally to impose a curvature ratio and modulated pressurization through osmotic changes. We find that CMTs can be longitudinal or transverse in wallless protoplasts and that the switch in CMT orientation depends on pressurization. In particular, longitudinal CMTs become transverse when cortical tension increases. This explains the dual behavior of CMTs in planta: CMTs become longitudinal when stress levels become low, while stable transverse CMT alignments in tissues result from their autonomous response to tensile stress fluctuations.


Author(s):  
Pawel Zmarzly

Raceway curvature ratio is a very important parameter, because its values influence the performance characteristics of rolling-element bearings, their durability and the level of generated vibrations. However, the level of generated vibrations is one of the most important operating parameters of the rolling-element bearings. Excessive vibrations generated by rolling-element bearings affect the operation of the whole mechanism. The article presents experimental studies aimed at evaluation of influence of the inner and outer raceway curvature ratios of 6304-type rolling-element bearings on generated vibrations values. The raceway curvature ratio was determined based on results of metrological measurements. For this purpose, the radii of the inner and outer raceways as well as the diameters of the balls were measured. Design and principle of operation of an innovative system for analysis of the raceway geometry of the rolling bearing rings was presented. The vibration analysis was carried out in three frequency ranges, i.e. low (50-300 Hz), medium (300-1,800 Hz) and high (1,800-10,000 Hz). Values of measured vibrations were expressed in Anderon units. The test results showed that increase in the raceway curvature ratio causes a moderate decrease in the value of the generated vibrations. The research results presented in this article will serve as a guidance to designers and manufacturers of the rolling-element bearings on how to modify the geometry of raceways and balls to obtain bearings that generate low vibration values. That is very important in car transportation.


Sign in / Sign up

Export Citation Format

Share Document