fragmentation pathways
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 53)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
Dennys Leyva ◽  
Muhammad Usman Tariq ◽  
Rudolf Jaffé ◽  
Fahad Saeed ◽  
Francisco Fernandez Lima

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6964
Author(s):  
Monika Kijewska ◽  
Dorota Gąszczyk ◽  
Remigiusz Bąchor ◽  
Piotr Stefanowicz ◽  
Zbigniew Szewczuk

Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and charge-directed (ChD) fragmentation. A series of model peptide conjugates derivatized with N,N,N-triethyloammonium (TEA), 1-azoniabicyclo[2.2.2]octane (ABCO), 2,4,6-triphenylopyridinium (TPP) and tris(2,4,6-trimetoxyphenylo)phosphonium (TMPP) groups were analyzed by their fragmentation pathways both in collision-induced dissociation (CID) and electron-capture dissociation (ECD) mode. The effect of the fixed-charge tag type and peptide sequence on the fragmentation pathways was investigated. We found that the aspartic acid effect plays a crucial role in the CID fragmentation of TPP and TEA peptide conjugates whereas it was not resolved for the peptides derivatized with the phosphonium group. ECD spectra are mostly dominated by cn ions. ECD fragmentation of TMPP-modified peptides results in the formation of intense fragments derived from this fixed-charge tag, which may serve as reporter ion.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5961
Author(s):  
Ibrahim Aissa ◽  
Anikó Kilár ◽  
Ágnes Dörnyei

Lipid A, the membrane-bound phosphoglycolipid component of bacteria, is held responsible for the clinical syndrome of gram-negative sepsis. In this study, the fragmentation behavior of a set of synthetic lipid A derivatives was studied by electrospray ionization multistage mass spectrometry (ESI-MSn), in conjunction with tandem mass spectrometry (MS/MS), using low-energy collision-induced dissociation (CID). Genealogical insight about the fragmentation pathways of the deprotonated 4’-monophosphoryl lipid A structural analogs led to proposals of a number of alternative dissociation routes that have not been reported previously. Each of the fragment ions was interpreted using various possible mechanisms, consistent with the principles of reactions described in organic chemistry. Specifically, the hypothesized mechanisms are: (i) cleavage of the C-3 primary fatty acid leaves behind an epoxide group attached to the reducing sugar; (ii) cleavage of the C-3’ primary fatty acid (as an acid) generates a cyclic phosphate connected to the nonreducing sugar; (iii) cleavage of the C-2’ secondary fatty acid occurs both in acid and ketene forms; iv) the C-2 and C-2’ primary fatty acids are eliminated as an amide and ketene, respectively; (v) the 0,2A2 cross-ring fragment contains a four-membered ring (oxetanose); (vi) the 0,4A2 ion is consecutively formed from the 0,2A2 ion by retro-aldol, retro-cycloaddition, and transesterification; and (vii) formations of H2PO4− and PO3− are associated with the formation of sugar epoxide. An understanding of the relation between 0,2A2 and 0,4A2-type sugar fragments and the different cleavage mechanisms of the two ester-linked primary fatty acids is invaluable for distinguishing lipid A isomers with different locations of a single ester-linked fatty acid (i.e., at C-3 or C-3’). Thus, in addition to a better comprehension of lipid A fragmentation processes in mass spectrometers, our observations can be applied for a more precise elucidation of naturally occurring lipid A structures.


ChemPlusChem ◽  
2021 ◽  
Author(s):  
Abderrahmane Semmeq ◽  
Michael Badawi ◽  
Marie-Antoinette Dziurla ◽  
Said Ouaskit ◽  
Antonio Monari

2021 ◽  
Author(s):  
Nathanael Kidwell ◽  
Andrew Petit ◽  
Marcus Marracci ◽  
K. Blackshaw

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1059
Author(s):  
Jin Young Lee ◽  
Kyoung Chan Lim ◽  
Hyun Suk Kim

As a first step toward studying the properties of Novichok (ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)), we investigated its degradation products and fragmentation pathways in aqueous solution at different pH levels by liquid chromatography–tandem mass spectrometry. A234 was synthesized in our laboratory and characterized by nuclear magnetic resonance spectroscopy. Three sets of aqueous samples were prepared at different pH levels. A stock solution of A234 was prepared in acetonitrile at a concentration of 1 mg/mL and stored at −20 °C until use. Aqueous samples (0.1 mg/mL) were prepared by diluting the stock solution with deionized water. The acidic aqueous sample (pH = 3.5) and basic aqueous sample (pH = 9.4) were prepared using 0.01 M acetic acid and 0.01 M potassium carbonate, respectively. The analysis of the fragmentation patterns and degradation pathways of A234 showed that the same degradation products were formed at all pH levels. However, the hydrolysis rate of A234 was fastest under acidic conditions. In all three conditions, the fragmentation pattern and the major degradation product of A234 were determined. This information will be applicable to studies regarding the decontamination of Novichok and the trace analysis of its degradation products in various environmental matrices.


Sign in / Sign up

Export Citation Format

Share Document