biochemical characteristics
Recently Published Documents


TOTAL DOCUMENTS

2017
(FIVE YEARS 404)

H-INDEX

63
(FIVE YEARS 8)

Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Eleni C. Pappa ◽  
Thomas G. Bontinis ◽  
John Samelis ◽  
Kyriaki Sotirakoglou

Traditional hard Xinotyri cheese was manufactured using raw or pasteurized goat milk, without starter cultures, and the changes in microbiological and biochemical characteristics were studied during ripening and storage. Mesophilic lactic acid bacteria (LAB) predominated (>8.5 log CFU/g) in freshly fermented Xinotyri cheeses (pH 4.5–4.6), regardless of milk pasteurization. Enterobacteria, pseudomonads and staphylococci were suppressed below 6 and 4–5 log CFU/g in fresh cheeses from raw and pasteurized milk, respectively. Salmonella and Listeria spp. were absent in 25 g cheese samples. Coagulase-positive staphylococci exceeded the 5-log safety threshold in fresh raw milk cheeses, which also had 10-fold higher levels of enterococci than pasteurized milk cheeses. Non-LAB groups declined <100 CFU/g, whereas yeasts increased to 5–6 log CFU/g in both cheeses during ripening. Milk pasteurization affected the protein, fat, ash, moisture, nitrogen fractions, total free fatty acids and total free amino acids content of cheeses. Primary proteolysis, detectable by urea-PAGE, was more intense in raw milk cheeses than in pasteurized milk cheeses. However, the hydrophilic and hydrophobic peptides and their ratio in the water-soluble fraction were similar in both cheeses. Cheeses discriminated clearly according to the milk kind (raw, pasteurized) and the stage of ripening, based on the examined biochemical characteristics.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Karatas

Abstract Summer apples are one of the most important plant community in Artvin province located Northeastern part of Turkey. In present study 22 local apple genotypes were characterized by phenological, morphological, biochemical and sensory properties. Harvest date was the main phenological data. Morphological measurements included fruit weight, fruit shape, fruit ground color, fruit over color, fruit over color coverage and fruit firmness, respectively. Sensory measurements were as juiciness and aroma and biochemical characteristics included organic acids, SSC (Soluble Solid Content), vitamin C, total phenolic content and antioxidant capacity. Genotypes exhibited variable harvest dates ranging from 11 July to 13 August and cv. Summered harvested 30 July 2017. The majority of genotypes were harvested before cv. Summered. Fruit weight were also quite variable among genotypes which found to be between 89 g and 132 g, and most of the genotypes had bigger fruits than cv. Summered. Pink, red, yellow and green fruit skin color was evident and main fruit shape were determined as round, conic and oblate among genotypes. ART08-9, ART08-4, ART08-21 and ART08-22 had distinct bigger fruits and ART08-1, ART08-2, ART08-5, ART08-12 and ART08-17 had higher total phenolic content and antioxidant capacity. The results of the study showed significant differences for most of the phenological, morphological, sensory and biochemical characteristics. Thus, the phonological, morphological, sensory and biochemical characteristics of summer apple genotypes were distinguishable and these results suggest that phonological, morphological, sensory and biochemical differences of the summer apple genotypes can be attributed to differences in genetic background of genotypes which placed different groups by PCoA analysis.


2022 ◽  
pp. 481-491
Author(s):  
Yaseen Khan ◽  
Anwar Hussain ◽  
Shujaul Mulk Khan ◽  
Khan Farzana ◽  
Zeeshan Ahmad

2021 ◽  
Vol 34 (1) ◽  
pp. 15-26
Author(s):  
Saoussen Kouki ◽  
Boulbaba L’taief ◽  
Rahamh Al-Qthanin ◽  
Mustapha Rouissi ◽  
Bouaziz Sifi

Increasing interest in using rhizobia as biofertilizers in smallholder agricultural farming systems has prompted scientists to investigate rhizobia diversity, resulting in the identification of many strains. Fifty-five Rhizobium strains nodulating in the common bean (Phaseolus vulgaris L.) were isolated from soil samples from different areas of Tunisia and phenotypically characterized to determine their symbiotic nitrogen fixation capabilities. Their tolerance to pH, salinity, temperature and alkalinity, as well as their cultural and biochemical characteristics indicated wide physiological diversity. These phenotypic characteristics significantly affected rhizobia growth, and strains of interest were identified and used in inoculation trials. They were efficient and able to tolerate pH from 4 to 9, NaCl concentrations of 25 to 100 mM, temperature variation from 10 to 40 °C, and lime (CaCO3) from 0.05 to 0.20 mM. Selected Rhizobium strains were identified as candidates for biofertilizer production for a variety of Tunisian soil types.


Author(s):  
N. V. Rositska ◽  
A. Yu. Yatskevich

The plants of the genus Acer section Palmata, which grow on the territory of M. M. Gryshko National Botanical Garden of NAS of Ukraine were investigated. It was found that the vast majority of A. palmatum and its cultivars were winter hardy. A study of the content of photosynthetic pigments revealed that the lowest content was in A. palmatum ‘Bloodgood’. The lowest content of malonic dialdehyde and proline was found in the leaves of A. palmatum ‘Dissectum’ and A. palmatum ‘Orange dream’, and the highest — in A. palmatum ‘Atropurpureum’ and A. palmatum. The greatest catalase activity was found in plants of A. palmatum ‘Atropurpureum’, and flavonoids — in A. palmatum.


2021 ◽  
pp. 43-55
Author(s):  
Habibioallah Farrokhi ◽  
Ahmad Asgharzadeh ◽  
Malihe Kazemi Samadi

Saffron is highly valued for its unique aroma, taste, color, and medicinal properties. Iran is one of the most important saffron-producing countries. The present study aimed to investigate the effect of climatic and environmental characteristics of six sites (Shirvan, Faruj, Zavareh, Torbat-e Heydarieh, Ghayen, and Birjand) on the yield and qualitative, and biochemical characteristics of saffron. The studied sites were considered as treatments. The obtained data were analyzed based on a nested design, where the village within the site was considered an experimental error, and the farm within the village within each site was considered a sampling error. The Torbat-e Heydarieh treatment with altitudes of ~1323.3 m produced the maximum saffron flower yield (0.83 g m2), stigma yield (0.098 g m2), safranal content (15.8%), picrocrocin content (30.6%), and crocins content (69.3%). Evidently that the low maximum summer temperature in the area is one of the reasons for its superiority. The correlation analysis between traits shows that the maximum summer temperature had a significant negative correlation with saffron flower yield, stigma yield, and picrocrocin and crocin content. Results showed the highest total flavonoid and phenol content and DPPH activity related to Shirvan and Faruj. Although the results showed that selenium could increase the quantitative and qualitative yield of saffron, this requires further studies to confirm it. Based on the findings, it is concluded that I) qualitative and quantitative characteristics of saffron are strongly controlled by the environmental and climatic conditions and II) Razavi Khorasan province had a significant advantage in terms of flower and stigma yield and safranal, picrocrocin and crocin content of saffron and North Khorasan province in terms of biochemical characteristics.


2021 ◽  
Author(s):  
Nguyen Quang LInh

Abstract In this study, 18 strains of Vibrio bacteria were identified from 27 samples of Red drum fish (Sciaenops ocellatus) suffering from the haemorrhagic disease from cage culture in Vietnam. The bacterial strains were identified with the 16S rRNA sequencing method and checked for morphological, physiological, and biochemical characteristics by using the API 20E KIT. Twelve strains of V. alginolyticus, three strains of V. fluvialis, and three strains of V. orientalis were recorded. All Vibrio strains have gene similarities with those on the gene bank ranging from 98 to 100%. The biochemical characteristics of these 18 isolates were similar. These bacteria are susceptible to tetracycline and doxycycline and entirely resistant to ampicillin, amoxicillin, and erythromycin.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1777
Author(s):  
Faujiah Nurhasanah Ritonga ◽  
Siyu Yan ◽  
Song Chen ◽  
Syamsudin A. Slamet ◽  
Laswi Irmayanti ◽  
...  

Cold and freezing stress is one of the most harmful environmental stresses, especially in temperate and subtropical areas, that adversely affects plant growth, development, and yield production. Betula platyphylla Sukaczev, also known as white birch, is one of the most valuable, important, and widely distributed tree species in East Asia. This study explored the effects of cold acclimation (CA) in reducing the destructive effect of freezing stress in B. platyphylla seedlings. We measured the physiological and biochemical characteristics of B. platyphylla seedlings, such as chlorophyll content, electrolyte leakage (EL), malondialdehyde (MDA), antioxidant enzymes (such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and proline content before and after freezing stress to observe the contribution of CA in reducing the detrimental effects of freezing stress. The results showed that CA increased physiological and biochemical characteristics of B. platyphylla seedlings before and after freezing stress, except for chlorophyll content. Antioxidant enzymes were significantly positively correlated with proline, MDA, and EL content, and negatively correlated with chlorophyll content. Moreover, histochemical detection (H2O2 and O2−) and cell death were revealed to be induced by cold stress in B. platyphylla seedlings. Furthermore, it was revealed that increased time and decreased temperature of the CA process significantly influenced the physiological and biochemical parameters. Overall, the CA process significantly reduced the detrimental effects of freezing stress compared to the control treatment in B. platyphylla seedlings. Taken together, these findings provide beneficial information toward understanding the mechanism of CA and freezing stress in B. platyphylla. Furthermore, the substantial activity of physiological and biochemical results could be used as selection criteria for screening time and temperature points of cold/freezing stress in further omics analyses. In addition, the combination of current study results, further omics analyses, and genetic engineering techniques directly contribute to sustainable forest management systems, tree plantations, and conservation of tree species, especially non-cold/non-freezing tolerant tree species.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 706
Author(s):  
Lianghuan Zeng ◽  
Junge Li ◽  
Yuanyuan Cheng ◽  
Dandan Wang ◽  
Jingyan Gu ◽  
...  

Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.


Sign in / Sign up

Export Citation Format

Share Document