structural mechanisms
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 118)

H-INDEX

45
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Tongqing Zhou ◽  
Lingshu Wang ◽  
John Misasi ◽  
Amarendra Pegu ◽  
Yi Zhang ◽  
...  

With B.1.1.529 SARS-CoV-2 variant's rapid spread and substantially increased resistance to neutralization by vaccinee and convalescent sera, monoclonal antibodies with potent neutralization are eagerly sought. To provide insight into effective neutralization, we determined cryo-EM structures and evaluated potent receptor-binding domain (RBD) antibodies for their ability to bind and neutralize this new variant. B.1.1.529 RBD mutations altered 16% of the RBD surface, clustering on a ridge of this domain proximal to the ACE2-binding surface and reducing binding of most antibodies. Significant inhibitory activity was retained, however, by select monoclonal antibodies including A19-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309 and LY-CoV1404, which accommodated these changes and neutralized B.1.1.529 with IC50s between 5.1-281 ng/ml, and we identified combinations of antibodies with potent synergistic neutralization. Structure-function analyses delineated the impact of resistance mutations and revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


2021 ◽  
Author(s):  
Hossein Salari ◽  
Marco Di Stefano ◽  
Daniel Jost

Chromosome organization and dynamics are involved in regulating many fundamental processes such as gene transcription and DNA repair. Experiments unveiled that chromatin motion is highly heterogeneous inside cell nuclei, ranging from a liquid-like, mobile state to a gel-like, rigid regime. Using polymer modeling, we investigate how these different physical states and dynamical heterogeneities may emerge from the same structural mechanisms. We found that the formation of topologically associating domains (TADs) is a key driver of chromatin motion heterogeneity. In particular, we showed that the local degree of compaction of the TAD regulates the transition from a weakly compact, fluid state of chromatin to a more compact, gel state exhibiting anomalous diffusion and coherent motion. Our work provides a comprehensive study of chromosome dynamics and a unified view of chromatin motion enabling interpretation of the wide variety of dynamical behaviors observed experimentally across different biological conditions, suggesting that the “liquid” or “solid” state of chromatin are in fact two sides of the same coin.


Author(s):  
Miguel Ricardo Leung ◽  
Ravi Teja Ravi ◽  
Bart M. Gadella ◽  
Tzviya Zeev-Ben-Mordehai

To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission–fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.


2021 ◽  
Author(s):  
Lin Mei ◽  
Matthew J Reynolds ◽  
Damien Garbett ◽  
Rui Gong ◽  
Tobias Meyer ◽  
...  

To fulfill the cytoskeleton's diverse functions in cell mechanics and motility, actin networks with specialized architectures are built by crosslinking proteins, which bridge filaments to control micron-scale network geometry through nanoscale binding interactions via poorly defined structural mechanisms. Here, we introduce a machine-learning enabled cryo-EM pipeline for visualizing active crosslinkers, which we use to analyze human T-plastin, a member of the evolutionarily ancient plastin/fimbrin family of tandem calponin-homology domain (CHD) proteins. We define a sequential bundling mechanism which enables T-plastin to bridge filaments in both parallel and anti-parallel orientations. Our structural, biochemical, and cell biological data highlight inter-CHD linkers as key structural elements underlying flexible but stable crosslinking which are likely to be disrupted by mutations causing hereditary bone diseases. Beyond revealing how plastins are evolutionary optimized to crosslink dense actin networks with mixed polarity, our cryo-EM workflow will broadly enable analysis of the structural mechanisms underlying cytoskeletal network construction.


BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e053816
Author(s):  
Nora Jacobson ◽  
Roberta A Johnson ◽  
Christie Schlabach ◽  
Jillian Incha ◽  
Lynn Madden ◽  
...  

ObjectiveAs part of an effort to design an implementation strategy tailoring tool, our research group sought to understand what is known about how contextual factors and prescriber characteristics affect the adoption of guideline-concordant opioid-prescribing practices in primary care settings.DesignWe conducted a realist synthesis of 71 articles.ResultsWe found that adoption is related to contextual factors at the individual, clinic, health system and environmental levels, which operate via intrapersonal, interpersonal, organisational and structural mechanisms.ConclusionA single static model cannot capture the complexity of the relationships between contexts, mechanisms and outcomes. Instead, a deeper understanding requires a dynamic model that conceptualises clusters of contextual factors and mechanisms that tend towards guideline concordance and clusters that tend toward non-concordance.Trail registration numberClinicalTrial.gov registration number NCT04044521.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113946118
Author(s):  
Fan Ye ◽  
Lingyi Xu ◽  
Xiaoxiao Li ◽  
Weizhong Zeng ◽  
Ninghai Gan ◽  
...  

Arabidopsis thaliana two-pore channel AtTPC1 is a voltage-gated, Ca2+-modulated, nonselective cation channel that is localized in the vacuolar membrane and responsible for generating slow vacuolar (SV) current. Under depolarizing membrane potential, cytosolic Ca2+ activates AtTPC1 by binding at the EF-hand domain, whereas luminal Ca2+ inhibits the channel by stabilizing the voltage-sensing domain II (VSDII) in the resting state. Here, we present 2.8 to 3.3 Å cryoelectron microscopy (cryo-EM) structures of AtTPC1 in two conformations, one in closed conformation with unbound EF-hand domain and resting VSDII and the other in a partially open conformation with Ca2+-bound EF-hand domain and activated VSDII. Structural comparison between the two different conformations allows us to elucidate the structural mechanisms of voltage gating, cytosolic Ca2+ activation, and their coupling in AtTPC1. This study also provides structural insight into the general voltage-gating mechanism among voltage-gated ion channels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arthur Neuberger ◽  
Kirill D. Nadezhdin ◽  
Alexander I. Sobolevsky

AbstractTRPV6 is a calcium-selective ion channel implicated in epithelial Ca2+ uptake. TRPV6 inhibitors are needed for the treatment of a broad range of diseases associated with disturbed calcium homeostasis, including cancers. Here we combine cryo-EM, calcium imaging, and mutagenesis to explore molecular bases of human TRPV6 inhibition by the antifungal drug econazole and the universal ion channel blocker ruthenium red (RR). Econazole binds to an allosteric site at the channel’s periphery, where it replaces a lipid. In contrast, RR inhibits TRPV6 by binding in the middle of the ion channel’s selectivity filter and plugging its pore like a bottle cork. Despite different binding site locations, both inhibitors induce similar conformational changes in the channel resulting in closure of the gate formed by S6 helices bundle crossing. The uncovered molecular mechanisms of TRPV6 inhibition can guide the design of a new generation of clinically useful inhibitors.


2021 ◽  
Vol 118 (44) ◽  
pp. e2109441118
Author(s):  
Min Woo Sung ◽  
Zhongying Yang ◽  
Camden M. Driggers ◽  
Bruce L. Patton ◽  
Barmak Mostofian ◽  
...  

Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.


2021 ◽  
Author(s):  
Jordan Tillinghast ◽  
Sydney Drury ◽  
Darren Bowser ◽  
Alana Benn ◽  
Kenneth Pak Kin Lee

Sign in / Sign up

Export Citation Format

Share Document