microbial sulfur oxidation
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 9 (12) ◽  
pp. 2529
Author(s):  
Sebastian Stasik ◽  
Juliane Schmidt ◽  
Katrin Wendt-Potthoff

The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L−1 day−1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L−1 day−1; p < 0.0001). The addition of KNO3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L−1 day−1; p = 0.0474), with complete transformation to SO42− coupled to NO3− consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates.


Author(s):  
Marit R. van Erk ◽  
Viola Krukenberg ◽  
Pia Bomholt Jensen ◽  
Sten Littmann ◽  
Dirk de Beer

At the deep-sea Guaymas Basin hydrothermal vent system, sulfide-rich hydrothermal fluids mix with oxygenated seawater, thereby providing a habitat for microbial sulfur oxidation. Microbial sulfur oxidation in the deep sea involves a variety of organisms and processes and can result in the excretion of elemental sulfur.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xinyun Cao ◽  
Tobias Koch ◽  
Lydia Steffens ◽  
Julia Finkensieper ◽  
Renate Zigann ◽  
...  

Many Bacteria and Archaea employ the heterodisulfide reductase (Hdr)-like sulfur oxidation pathway. The relevant genes are inevitably associated with genes encoding lipoate-binding proteins (LbpA). Here, deletion of the gene identified LbpA as an essential component of the Hdr-like sulfur-oxidizing system in the Alphaproteobacterium Hyphomicrobium denitrificans. Thus, a biological function was established for the universally conserved cofactor lipoate that is markedly different from its canonical roles in central metabolism. LbpAs likely function as sulfur-binding entities presenting substrate to different catalytic sites of the Hdr-like complex, similar to the substrate-channeling function of lipoate in carbon-metabolizing multienzyme complexes, for example pyruvate dehydrogenase. LbpAs serve a specific function in sulfur oxidation, cannot functionally replace the related GcvH protein in Bacillus subtilis and are not modified by the canonical E. coli and B. subtilis lipoyl attachment machineries. Instead, LplA-like lipoate-protein ligases encoded in or in immediate vicinity of hdr-lpbA gene clusters act specifically on these proteins.


Sign in / Sign up

Export Citation Format

Share Document