machine breakdowns
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 2)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 249
Author(s):  
Xiaohui Zhang ◽  
Yuyan Han ◽  
Grzegorz Królczyk ◽  
Marek Rydel ◽  
Rafal Stanislawski ◽  
...  

This study attempts to explore the dynamic scheduling problem from the perspective of operational research optimization. The goal is to propose a rescheduling framework for solving distributed manufacturing systems that consider random machine breakdowns as the production disruption. We establish a mathematical model that can better describe the scheduling of the distributed blocking flowshop. To realize the dynamic scheduling, we adopt an “event-driven” policy and propose a two-stage “predictive-reactive” method consisting of two steps: initial solution pre-generation and rescheduling. In the first stage, a global initial schedule is generated and considers only the deterministic problem, i.e., optimizing the maximum completion time of static distributed blocking flowshop scheduling problems. In the second stage, that is, after the breakdown occurs, the rescheduling mechanism is triggered to seek a new schedule so that both maximum completion time and the stability measure of the system can be optimized. At the breakdown node, the operations of each job are classified and a hybrid rescheduling strategy consisting of “right-shift repair + local reorder” is performed. For local reorder, we designed a discrete memetic algorithm, which embeds the differential evolution concept in its search framework. To test the effectiveness of DMA, comparisons with mainstream algorithms are conducted on instances with different scales. The statistical results show that the ARPDs obtained from DMA are improved by 88%.


2021 ◽  
Author(s):  
◽  
John Park

<p>Job shop scheduling (JSS) problems are difficult combinatorial optimisation problems that have been studied over the past 60 years. The goal of a JSS problem is to schedule the arriving jobs as effectively as possible on the limited machine resources on the shop floor. Each job has a sequence of operations that need to be processed on specific machines, but the machines can only process one job at a time. JSS and other types of scheduling are important problems in manufacturing systems, such as semiconductor manufacturing. In particular, this thesis focuses on dynamic JSS (DJSS) problems, where unforeseen events occur during processing that needs to be handled by the manufacturer. Examples of dynamic events that occur in DJSS problems are dynamic or unforeseen job arrivals, machine breakdowns, uncertain job processing times, and so on.  A prominent method of handling DJSS problems is to design effective dispatching rules for the DJSS problem handled by the manufacturer. Dispatching rules are local decision makers that determine what job is processed by a machine when the machine finishes processing the previous job and becomes available. Dispatching rules have been investigated extensively by both academics and industry experts due to their simplicity, interpretability, low computational cost and their ability to cope effectively in dynamic environments. However, dispatching rules are designed for a specific DJSS problem and have no guarantee that they retain their effectiveness on other DJSS problems. In a real-world scenario, the properties of a manufacturing system can change over time, meaning that previously effective dispatching rule may longer be effective. Therefore, a manufacturer may need to redesign a dispatching rule to maintain a competitive edge on the market. However, designing an effective dispatching rule for a specific DJSS problem is expensive, and typically requires a human expert and extensive trial-and-error process to verify their effectiveness. To circumvent the manual design of dispatching rules, researchers have proposed hyper-heuristic approaches to automate the design of dispatching rules. In particular, various genetic programming based hyper-heuristic (GP-HH) approaches have been proposed in the literature to evolve effective dispatching rules for scheduling problems, including DJSS problems. However, there are many potential directions that have not been fully investigated.  The overall goal of this thesis is to develop new and effective GP-HH approaches to designing high-quality dispatching rules for DJSS problems that aims to improve beyond the standard GP approach while maintaining computational efficiency. The focus will be on developing approaches which can decompose complex JSS problems down to simpler subcomponents, evolving multiple heuristics to handle the subcomponents, and developing GP-HH approaches that can handle complex DJSS problems by exploiting the problem properties.  This thesis is the first to develop ensemble GP approaches that evolve ensembles of dispatching rules using cooperative coevolution. In addition, the thesis also investigates different combination schemes for one of the ensemble GP approaches to combine the ensemble member outputs effectively. The results show that ensemble GP approach evolves rules that perform significantly better than the rules evolved by the benchmark GP approach.  This thesis provides the first investigation into applying GP-HH to a DJSS problem with dynamic job arrivals and machine breakdowns. In addition, the thesis also develops machine breakdown GP approach to the DJSS problem by incorporating machine breakdown GP terminals. The results show that the standard GP do not generalise well over the DJSS problem. The best rules from the machine breakdown GP approach do perform better than the best rule from the standard GP approach, and the analysis shows that the rules behaviour is similar to the shortest processing time rule in certain decision situations.  This thesis is the first to develop a multitask GP approach to evolve a portfolio of dispatching rules for a DJSS problem with dynamic job arrivals and machine breakdowns. The multitask GP approach improve on the standard GP approach either in terms of the effectiveness of the output rules or the computation time required to evolve the rules. The analysis shows that the difference between DJSS problem having no machine breakdowns and having machine breakdowns is a more significant factor than the difference between two DJSS problems with different frequencies of machine breakdown investigated.</p>


2021 ◽  
Author(s):  
◽  
John Park

<p>Job shop scheduling (JSS) problems are difficult combinatorial optimisation problems that have been studied over the past 60 years. The goal of a JSS problem is to schedule the arriving jobs as effectively as possible on the limited machine resources on the shop floor. Each job has a sequence of operations that need to be processed on specific machines, but the machines can only process one job at a time. JSS and other types of scheduling are important problems in manufacturing systems, such as semiconductor manufacturing. In particular, this thesis focuses on dynamic JSS (DJSS) problems, where unforeseen events occur during processing that needs to be handled by the manufacturer. Examples of dynamic events that occur in DJSS problems are dynamic or unforeseen job arrivals, machine breakdowns, uncertain job processing times, and so on.  A prominent method of handling DJSS problems is to design effective dispatching rules for the DJSS problem handled by the manufacturer. Dispatching rules are local decision makers that determine what job is processed by a machine when the machine finishes processing the previous job and becomes available. Dispatching rules have been investigated extensively by both academics and industry experts due to their simplicity, interpretability, low computational cost and their ability to cope effectively in dynamic environments. However, dispatching rules are designed for a specific DJSS problem and have no guarantee that they retain their effectiveness on other DJSS problems. In a real-world scenario, the properties of a manufacturing system can change over time, meaning that previously effective dispatching rule may longer be effective. Therefore, a manufacturer may need to redesign a dispatching rule to maintain a competitive edge on the market. However, designing an effective dispatching rule for a specific DJSS problem is expensive, and typically requires a human expert and extensive trial-and-error process to verify their effectiveness. To circumvent the manual design of dispatching rules, researchers have proposed hyper-heuristic approaches to automate the design of dispatching rules. In particular, various genetic programming based hyper-heuristic (GP-HH) approaches have been proposed in the literature to evolve effective dispatching rules for scheduling problems, including DJSS problems. However, there are many potential directions that have not been fully investigated.  The overall goal of this thesis is to develop new and effective GP-HH approaches to designing high-quality dispatching rules for DJSS problems that aims to improve beyond the standard GP approach while maintaining computational efficiency. The focus will be on developing approaches which can decompose complex JSS problems down to simpler subcomponents, evolving multiple heuristics to handle the subcomponents, and developing GP-HH approaches that can handle complex DJSS problems by exploiting the problem properties.  This thesis is the first to develop ensemble GP approaches that evolve ensembles of dispatching rules using cooperative coevolution. In addition, the thesis also investigates different combination schemes for one of the ensemble GP approaches to combine the ensemble member outputs effectively. The results show that ensemble GP approach evolves rules that perform significantly better than the rules evolved by the benchmark GP approach.  This thesis provides the first investigation into applying GP-HH to a DJSS problem with dynamic job arrivals and machine breakdowns. In addition, the thesis also develops machine breakdown GP approach to the DJSS problem by incorporating machine breakdown GP terminals. The results show that the standard GP do not generalise well over the DJSS problem. The best rules from the machine breakdown GP approach do perform better than the best rule from the standard GP approach, and the analysis shows that the rules behaviour is similar to the shortest processing time rule in certain decision situations.  This thesis is the first to develop a multitask GP approach to evolve a portfolio of dispatching rules for a DJSS problem with dynamic job arrivals and machine breakdowns. The multitask GP approach improve on the standard GP approach either in terms of the effectiveness of the output rules or the computation time required to evolve the rules. The analysis shows that the difference between DJSS problem having no machine breakdowns and having machine breakdowns is a more significant factor than the difference between two DJSS problems with different frequencies of machine breakdown investigated.</p>


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Nafis Khumaidah ◽  
Tedjo Sukmono

PT. MJT is a company engaged in manufacturing that produces various types of plastic tubes for cosmetic packaging. Production activities at PT. MJT uses an intermittent process, which in the printing division requires a longer total setup time because this process produces various types of specifications of goods to order. This has an effect on the amount of engine breakdown. The purpose of this research is to try the method of forecasting the number of breakdowns for offset printing machines at PT. MJT. One of the methods used in this research is the Support Vector Machine method. Support Vector Machine is a method that can help predict the number of breakdowns that will be experienced by the offset printing machine at PT. MJT. Support vector machine is a method that can reduce the error value in forecasting compared to other methods. From this research, it is hoped that it can produce a forecast of the number of breakdowns for offset printing machines at PT. MJT for a period of one year or twelve periods.


2021 ◽  
Vol 10 (3) ◽  
pp. 50-66
Author(s):  
Jacob Ben ◽  
Aezeden O. Mohamed ◽  
Kamalakanta Muduli

This paper investigates the effect of preventive maintenance on the reliabilities of devices in a bottling plant. Six months of real-time maintenance data were analyzed quantitatively. Based on the breakdown events obtained for each machine, mean time between failure (MTBF), mean time to repair (MTTR), and failure rate (λ) values for individual equipment are calculated. The bottle packer, empty bottle inspector (EBI), and palletizer are identified as the plant's critical machines. A breakdown analysis (BDA) is then performed on the bottle packer and from the failure mode of all the reoccurring problems affecting this machine as a result of ineffective PM. An autonomous maintenance (AM) team is set up as part of establishing an effective PM program to improve the reliabilities of the critical machines that were continually falling. A significant reduction in machine breakdowns is observed after two months of rolling out the AM program. As a result, the reliability of bottle packer increased from 55.30% to 70.80%, while EBI and palletizer increased from 89.20% and 87.20% to 92% and 90.50%, respectively.


2021 ◽  
pp. 165-170
Author(s):  
Della Webster ◽  
Sylvia Humphries

This chapter illustrates a few things people need to know to live well in rural Canada, especially those who are aging. It emphasizes the need for a reliable vehicle and knowledge on what to do and prepare for emergencies, such as power outages, snowstorms, ice buildup, and vehicle and machine breakdowns. It also points out how the small size of rural communities can lead to social isolation, especially for someone who is new to the area. the chapter reviews observations and knowledge of aging experiences, challenges, and opportunities in two communities in rural New Brunswick. It starts with an overview of each community in New Brunswick, followed by a summary of the unique barriers and opportunities to aging well in rural areas.


Sign in / Sign up

Export Citation Format

Share Document