optimization software
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 49)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Omid Keramatlou ◽  
Nikbakhsh Javadian ◽  
Hosein Didehkhani ◽  
Mohammad Amirkhan

Abstract In this paper, a closed-loop supply chain (CLSC) is modeled to obtain the best location of retailers and allocate them to other utilities. The structure of CLSC includes production centers, retailers’ centers, probabilistic customers, collection, and disposal centers. In this research, two strategies are considered to find the best location for retailers by focusing on 1- the type of expected movement 2- expected coverage (distance and time) for minimizing the costs and maximizing the profit by considering the probabilistic customer and uncertainly demand. First of all, the expected distances between customers and retailers are calculated per movement method. These values are compared with the Maximum expected coverage distance of retailers, which is displayed in algorithm 1 heuristically, and the minimum value is picked. Also, to allocate customers to retailers, considering the customer's movement methods and comparing it with Maximum expected coverage time, which is presented in Algorithm 2 heuristically, the minimum value is chosen to this end, a bi-objective nonlinear programming model is proposed. This model concurrently compares Strategies 1 and 2 to select the best competitor. Based on the chosen strategy, the best allocation is determined by employing two heuristic algorithms, and the locations of the best retailers are determined. As the proposed model is NP-hard, a meta-heuristics (non-dominated sorting genetic) algorithm is employed for the solution process. Afterward, the effectiveness of the proposed model is validated and confirmed, and the obtained results are analyzed. For this purpose, a numerical example is given and solved through the optimization software.


2022 ◽  
Vol 12 (2) ◽  
pp. 611
Author(s):  
Evangelos Tyflopoulos ◽  
Martin Steinert

Topology optimization (TO) has been a popular design method among CAD designers in the last decades. This method optimizes the given design domain by minimizing/maximizing one or more objective functions, such as the structure’s stiffness, and at the same time, respecting the given constraints like the volume or the weight reduction. For this reason, the companies providing the commercial CAD/FEM platforms have taken this design trend into account and, thus, have included TO in their products over the last years. However, it is not clear which features, algorithms, or, in other words, possibilities the CAD designers do have using these software platforms. A comparative study among the most applied topology optimization software was conducted for this research paper. First, the authors developed an online database of the identified TO software in the form of a table. Interested CAD designers can access and edit its content, contributing in this way to the creation of an updated library of the available TO software. In addition, a deeper comparison among three commercial software platforms—SolidWorks, ANSYS Mechanical, and ABAQUS—was implemented using three common case studies—(1) a bell crank lever, (2) a pillow bracket, and (3) a small bridge. These models were designed, optimized, and validated numerically, as well as compared for their strength. Finally, the above software was evaluated with respect to optimization time, optimized designs, and TO possibilities and features.


2021 ◽  
Author(s):  
Yuzar Aryadi ◽  
Azis Hidayat ◽  
Hilman Lazuardi ◽  
Syahroni Isnanto ◽  
Bonni Ariwibowo ◽  
...  

Abstract SCADA optimization platform is implemented to monitor and evaluate well performance. For Sucker Rod Pump, SCADA Optimization Software can be used to monitor the unit balance and gearbox torque. In some ways, not all required well configuration data for SCADA Optimization Software to do a calculation of counterbalance torque (CBT) for pumping unit balance and gearbox torque evaluation are available. Standard field Counterbalance Effect (CBE) measurement might be performed to calculate the CBT value. However, this standard procedure is limited to well that run on balance condition. For well with unbalance condition, the measured CBE needs to be adjusted by a correction factor which the equation will be presented in this paper. The corrected CBE value from the new equation is then inputted to the SCADA Optimization software to perform day-to-day real-time monitoring of pumping unit balance and gearbox torque. Derivation of the CBE correction factor equation is presented. Validation upon this new equation is performed by comparing the result with electrical measurement on the pumping unit motor. Using the calculated CBT from the new equation, SCADA Optimization Software performs gearbox torque and pumping unit balance analysis based on every collected dynamometer card. Calculated CBT from the new equation provided results in gearbox torque distribution pattern that match with measured electrical parameter distribution along the stroke. This CBT value assists SCADA optimization software to calculate pumping unit balance and gearbox torque. Alarm in the SCADA optimization software that coming from an anomaly on pumping unit balance and gearbox torque help operator to do preventive maintenance so that pumping unit component especially the gearbox could have longer run life.


Topology optimization is useful to carrying out the weight reduction and in process cost reduction can be achieved. This kind of optimization input shape and size modification and optimization give us improved product in reduction of material. For this study, planet pinion carrier is selected for topology optimization. Software gives an innovative real-time picture of company activities and ecosystem and links people, ideas and data in a single collaborative environment. The 3DEXPERIENCE platform as an operating system helps companies to achieve operational excellence. Casting is a process where allowances and other things are provided and if we could able to optimize the material and weight of the casting there is a scope for optimization the material size and shape in casting process. Planet pinion carrier which is a cast product is taken from well-known industry for topology optimization. For optimization that product first 3D model is done and this 3D model is given as an input for topology optimization software. Force analysis is carried out by using ANSYS software and then topology optimization procedure is applied accordingly product is optimized. After topology optimization again force analysis is carried out. It has been found that 20 percent reduction is observed in this study. The part details and load conditions are given by well-known industry for topology optimization. Size, shape and cost is reduced by giving various load conditions in FUSION 360 software. Modeling and remodeling is done using software. Comparative study has been done using AUTOCAST software. Part details are calculated and also casting flow and real time for actual casting is simulated by using software.


Author(s):  
Dávid Papp ◽  
Sercan Yıldız

We present alfonso, an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an ε-optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2.


2021 ◽  
pp. 0309524X2110246
Author(s):  
Souhir Tounsi

The work presented in this paper deals with an AC model of wind turbine system conversion to a DC model with reduced simulation time, for possible integration to optimization software with larges scales permitting a multi-objective optimization, such as the constrained optimization conjointly of the cost and power losses of the wind turbine energy system. The DC model is based on average calculation of the DC voltage recharging the battery energy accumulator used for recovering the converted wind energy and the electromagnetic torque. Indeed, classical model of wind turbine using generally electric generator associated to a PD3 rectifier to convert the alternative energy on DC energy recoverable on battery energy accumulator with need a large simulation time and thereafter it is non integrable to optimization software for multi-objective optimization problem resolution. The two models are implemented under Matlab-Simulink simulation environment. Simulation results valid entirely the wind turbine system DC model. Finally, as perspective it is interesting to use a booster chopper as an interface between the rectifier and the battery to optimize the recovered energy. An average model of the booster chopper can be integrated into the DC model for performance improvement of the conversion chain.


Sign in / Sign up

Export Citation Format

Share Document