membrane fission
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 54)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Krishnendu Roy ◽  
Thomas Pucadyil

Dynamin-related protein1 (Drp1) functions to divide mitochondria and peroxisomes by binding specific adaptor proteins and lipids, both of which are integral to the limiting organellar membrane. In efforts to understand how such multivalent interactions regulate Drp1 functions, in vitro reconstitution schemes rely on recruiting soluble portions of the adaptors appended with genetically encoded polyhistidine tags onto membranes containing Ni2+-bound chelator lipids. These strategies are facile and circumvent the challenge in working with membrane proteins but assume that binding is specific to proteins carrying the polyhistidine tag. Here, we find using chelator lipids and chelator beads that both native and recombinant Drp1 directly bind Ni2+ ions. Unlike that seen with the native mitochondrial lipid cardiolipin, metal-bound chelator lipids recruit Drp1 to the membrane but is rendered functionally inactive in membrane fission. Metal-bound chelator beads also recruit Drp1 and represents a potential strategy to deplete or purify the protein from native tissue lysates.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yasuo Yamazaki ◽  
Yuka Eura ◽  
Koichi Kokame

Membrane fission, the division of a membrane-bound structure into two discrete compartments, is essential for diverse cellular events, such as endocytosis and vesicle/granule biogenesis; however, the process remains unclear. The hemostatic protein von Willebrand factor is produced in vascular endothelial cells and packaged into specialized secretory granules, Weibel-Palade bodies (WPBs) at the trans-Golgi network (TGN). Here, we reported that V0a1, a V-ATPase component, is required for the membrane fission of WPBs. We identified two V0a isoforms in distinct populations of WPBs in cultured endothelial cells, V0a1 and V0a2, on mature and nascent WPBs, respectively. Although WPB buds were formed, WPBs could not separate from the TGN in the absence of V0a1. Screening using dominant-negative forms of known membrane fission regulators revealed protein kinase D (PKD) as an essential factor in biogenesis of WPBs. Further, we showed that the induction of wild-type PKDs in V0a1-depleted cells does not support the segregation of WPBs from the TGN; suggesting a primary role of V0a1 in the membrane fission of WPBs. The identification of V0a1 as a new membrane fission regulator should facilitate the understanding of molecular events that enable membrane fission.


Author(s):  
Miguel Ricardo Leung ◽  
Ravi Teja Ravi ◽  
Bart M. Gadella ◽  
Tzviya Zeev-Ben-Mordehai

To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission–fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.


2021 ◽  
Author(s):  
Ben Zucker ◽  
Gonen Golani ◽  
Michael M. Kozlov

Tubular networks of endoplasmic reticulum (ER) are dynamic structures whose steady-state conformations are maintained by a dynamic balance between the persistent generation and vanishing of the network elements. While factors producing the ER tubules and inter-tubular junctions have been investigated, the mechanisms behind their elimination remained unknown. Here we addressed the ER ring closure, the process resulting in the tubule and junction removal through constriction of the network unit-cells into junctional knots followed by the knot remodeling into regular junctions. We considered the ring closure to be driven by the tension existing in ER membranes. We modeled, computationally, the structures of the junctional knots containing internal nanopores and analyzed their tension dependence. We predicted an effective interaction between the nanopores facilitating the knot tightening and collapse of additional network unit cells. We analyzed the process of the pore sealing through membrane fission resulting in formation of regular junctions. Considering the hemi-fission as the rate-limiting stage of the fission reaction, we evaluated the membrane tensions guarantying the spontaneous character of the pore sealing. We concluded that feasible membrane tensions explain all stages of the ER ring closure.


Author(s):  
Ausencio Galindo ◽  
Rosario Javier-Reyna ◽  
Guillermina García-Rivera ◽  
Cecilia Bañuelos ◽  
Sarita Montaño ◽  
...  

The endosomal sorting complex required for transport (ESCRT) is formed by ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III complexes, and accessory proteins. It conducts vesicular trafficking in eukaryotes through the formation of vesicles and membrane fission and fusion events. The trophozoites of Entamoeba histolytica, the protozoan responsible for human amoebiasis, presents an active membrane movement in basal state that increases during phagocytosis and tissue invasion. ESCRT-III complex has a pivotal role during these events, but ESCRT-0, ESCRT-I and ESCRT-II have been poorly studied. Here, we unveiled the E. histolytica ESCRT-I complex and its implication in vesicular trafficking and phagocytosis, as well as the molecular relationships with other phagocytosis-involved molecules. We found a gene encoding for a putative EhVps23 protein with the ubiquitin-binding and Vps23 core domains. In basal state, it was in the plasma membrane, cytoplasmic vesicles and multivesicular bodies, whereas during phagocytosis it was extensively ubiquitinated and detected in phagosomes and connected vesicles. Docking analysis, immunoprecipitation assays and microscopy studies evidenced its interaction with EhUbiquitin, EhADH, EhVps32 proteins, and the lysobisphosphatidic acid phospholipid. The knocking down of the Ehvps23 gene resulted in lower rates of phagocytosis. Our results disclosed the concert of finely regulated molecules and vesicular structures participating in vesicular trafficking-related events with a pivotal role of EhVps23.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 812
Author(s):  
Ekaterina Gongadze ◽  
Luka Mesarec ◽  
Samo Kralj ◽  
Veronika Kralj-Iglič ◽  
Aleš Iglič

Within a modified Langevin Poisson–Boltzmann model of electric double layers, we derived an analytical expression for osmotic pressure between two charged surfaces. The orientational ordering of the water dipoles as well as the space dependencies of electric potentials, electric fields, and osmotic pressure between two charged spheres were taken into account in the model. Thus, we were able to capture the interaction between the parent cell and connected daughter vesicle or the interactions between neighbouring beads in necklace-like membrane protrusions. The predicted repulsion between them can facilitate the topological antidefect-driven fission of membrane daughter vesicles and the fission of beads of undulated membrane protrusions.


Author(s):  
Ana Katic ◽  
Dario Hüsler ◽  
François Letourneur ◽  
Hubert Hilbi

The haploid social amoeba Dictyostelium discoideum is a powerful model organism to study vesicle trafficking, motility and migration, cell division, developmental processes, and host cell-pathogen interactions. Dynamin superfamily proteins (DSPs) are large GTPases, which promote membrane fission and fusion, as well as membrane-independent cellular processes. Accordingly, DSPs play crucial roles for vesicle biogenesis and transport, organelle homeostasis, cytokinesis and cell-autonomous immunity. Major progress has been made over the last years in elucidating the function and structure of mammalian DSPs. D. discoideum produces at least eight DSPs, which are involved in membrane dynamics and other processes. The function and structure of these large GTPases has not been fully explored, despite the elaborate genetic and cell biological tools available for D. discoideum. In this review, we focus on the current knowledge about mammalian and D. discoideum DSPs, and we advocate the use of the genetically tractable amoeba to further study the role of DSPs in cell and infection biology. Particular emphasis is put on the virulence mechanisms of the facultative intracellular bacterium Legionella pneumophila.


2021 ◽  
Author(s):  
Ane Landajuela ◽  
Martha Braun ◽  
Alejandro Martinez-Calvo ◽  
Christopher D. A. Rodrigues ◽  
Thierry Doan ◽  
...  

Bacteria require membrane fission for cell division and endospore formation. FisB catalyzes membrane fission during sporulation, but the molecular basis is unclear as it cannot remodel membranes by itself. Sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only 1/4 of its complete genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor. When the engulfing membranes undergo fission, the forespore is released into the mother cell cytoplasm. Here we show that forespore inflation and FisB accumulation are both required for efficient membrane fission. We suggest that high membrane tension in the engulfment membrane caused by forespore inflation drives FisB-catalyzed membrane fission. Collectively our data indicate that DNA-translocation has a previously unappreciated second function in energizing FisB-mediated membrane fission under energy-limited conditions.


2021 ◽  
Author(s):  
Andreas Mayer ◽  
Courtellement Thibault ◽  
Maria Giovanna De Leo ◽  
Navin Gopaldass

Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2, a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.


Sign in / Sign up

Export Citation Format

Share Document