ultrasonic impact treatment
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 67)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Gökçe Mehmet Gençer ◽  
Fatih Kahraman ◽  
Coşkun Yolcu

Abstract In this study, the slurry abrasive wear behavior of silicon carbide particle reinforced A356 composite alloy was investigated after the different surface mechanical attrition treatments. It is known that the aluminum matrix composites produced by the stir casting method have some deficiencies (e.g unfavorable microstructure formation, particle clustering, porosity formation, etc.). These kinds of drawbacks of the composites adversely affect the surface mechanical properties of materials such as wear resistance. For this purpose, the surface properties of the silicon carbide reinforced A356 matrix composites fabricated through the stir casting method were improved by using friction stir processing (FSP) and ultrasonic impact treatment (UIT) in the study. The results indicated that a remarkable increase was observed in the hardness and wear resistance of the cast composite via FSP and ultrasonic impact treatment following friction stir processing (FSP+UIT). The hardness of the stir zone after FSP and FSP+UIT was determined as 82.7+-2 HV and 101.9 +-3 HV0.2, respectively. The stir zone showed a similar tendency also in slurry abrasive wear resistance. FSP increased the wear resistance in the stir zone at the rate of 33.9% while it was determined as 35.5% for FSP+UIT. The microstructural modification of the cast composite that occurred after FSP was clearly demonstrated via optical microscope and scanning electron microscopy (SEM) examinations. Enhanced grain refinement after FSP+UIT was indicated especially by X-ray diffraction analysis (XRD). According to the findings, it was observed that the application of ultrasonic impact treatment following the friction stir processing can be used to obtain an enhanced microstructure and extra hardness increment in the surface of the SiC reinforced A356 alloy, thus resulting in slurry abrasive wear resistance increment.


Author(s):  
Alexey V. Panin ◽  
Marina S. Kazachenok ◽  
Andrey I. Dmitriev ◽  
Anton Yu Nikonov ◽  
Olga B. Perevalova ◽  
...  

Author(s):  
Cheng Wang ◽  
Xingyuan Hu ◽  
Yang Cheng ◽  
Xiaogui Wang ◽  
Haishun Deng ◽  
...  

Author(s):  
Tao Mo ◽  
Jingqing Chen ◽  
Pengju Zhang ◽  
Wenqian Bai ◽  
Xiao Mu ◽  
...  

Ultrasonic impact treatment (UIT) is an effective method that has been widely applied in welding structure to improve the fatigue properties of materials. It combines mechanical impact and ultrasonic vibration to produce plastic deformation on the weld joints surface, which introduces beneficial compressive residual stress distribution. To evaluate the effect of UIT technology on alleviating the residual stress of welded joints, a novel numerical analysis method based on the inherent strain theory is proposed to simulate the stress superposition of welding and subsequent UIT process of 304 stainless steel. Meanwhile, the experiment according to the process was carried out to verify the simulation of residual stress values before and after UIT. By the results, optimization of UIT application could effectively reduce the residual stress concentration after welding process. Residual tensile stress of welded joints after UIT is transformed into residual compressive stress. UIT formed a residual compressive stress layer with a thickness of about 0.13 mm on the plate. The numerical simulation results are consistent with the experimental results. The work in this paper could provide theoretical basis and technical support for the reasonable evaluation of the ultrasonic impact on residual stress elimination and mechanical properties improvement of welded joints.


Sign in / Sign up

Export Citation Format

Share Document