trajectory generation algorithm
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 38 (11) ◽  
pp. 825-832
Author(s):  
Juhyun Kim ◽  
Sang Hyun Park ◽  
Dong-Guan Shin ◽  
Min-Gyu Kim ◽  
Seong Youb Chung ◽  
...  

2021 ◽  
Vol 15 (5) ◽  
pp. 621-630
Author(s):  
Shingo Tajima ◽  
◽  
Satoshi Iwamoto ◽  
Hayato Yoshioka

The demands for machining by industrial robots have been increasing owing to their low installation cost and high flexibility. A novel trajectory generation algorithm for high-speed and high-accuracy machining by industrial robots is proposed in this paper. Linear interpolation in the workspace and smooth trajectory generation at the corners are important in industrial machining robots. Because industrial robots are composed of rotational joints, the joint space has a nonlinear relationship with the workspace. Therefore, linear interpolation in the joint space, which has been widely used in conventional machine tools, does not guarantee linear interpolation in the actual machining workspace. This results in the degradation of the machining surface. The proposed trajectory generation algorithm based on the decoupled approach can achieve linear interpolation in the workspace by separating the position commands into Cartesian coordinates and the orientation commands into spherical coordinates. In addition, a novel corner smoothing method that generates a smooth and continuous trajectory from discrete commands is proposed in this paper. The proposed kinematic local corner smoothing generates a smooth trajectory by using a 3-segmented constant jerk profile at the corners in the joint space. The sharp corners can thereby be replaced by smooth curves. The resulting cornering error is controlled by varying the cornering duration. The simulation results demonstrate the effectiveness of the proposed kinematic smoothing algorithm in achieving linear tool motion in straight sections and in generating smooth trajectories at corner sections within the user-defined tolerance.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Susumu Saito ◽  
Navinda Kithmal Wickramasinghe ◽  
Tatsuhiko Sato ◽  
Daikou Shiota

AbstractA solar energetic particle (SEP) event generates a shower of secondary generated particles in the Earth’s atmosphere down to lower altitudes to cause an atmospheric radiation storm (ARS). The high-energy secondary particles cause additional radiation dose at altitudes where aircraft flies. The space weather information provided by the International Civil Aviation Organization (ICAO) designated space weather centers includes advisories on the solar radiation storm. The Warning System for AVIation Exposure to Solar energetic particle (WASAVIES), we can estimate the effective dose rate (EDR) along the flight path of the aircraft. However, it has not been well established how the operators of aircraft should react with the space weather advisories on the solar radiation storm. By using a flight trajectory generation algorithm and the global EDR distribution, the economic impacts of ARS associated with SEP events on aircraft operation, namely the flight path length, flight time, and fuel consumption, are estimated. The conditions of the peak of the ARS event on 20 January 2005 are used. The economic impacts for a flight route from New York, US to Tokyo, Japan, are estimated with constraints in flight routes to avoid the hazard of radiation and compared with those of the reference case without the ARS effects. The fuel consumption is shown to increase by 39–69 tons (33–58%) for a twin-engine, wide-body jet passenger aircraft, when a constraint is imposed on the flight altitude only. When the constraints are set on the aircraft altitude and the latitude, the flight time and the fuel consumption are both increased by 2.2–2.8 h (17–20%) and 32–48 tons (27–41%), respectively. If the ARS event duration is limited for 3 h, the increase in the fuel consumption is about 7.6–14 tons (6.4–12%). This economic impact may be reduced, if the space weather nowcast and forecast for the ARS and an optimal flight trajectory generation algorithm are used together. Setting more flexible constraints on the flight route and generating optimal flight trajectories with minimal economic impacts by fully utilizing the global EDR distribution is the next step.


Sign in / Sign up

Export Citation Format

Share Document